Answer:
A. 336
B. Arranging 3 people in 8 chairs.
C. 42
B. Arranging 2 people in 7 chairs.
Step-by-step explanation:
A.
![P(n, r) = P(8, 3)](https://tex.z-dn.net/?f=P%28n%2C%20r%29%20%3D%20P%288%2C%203%29)
Formula for Permutation is given as:
![P(n, r) = \dfrac{n!}{(n-r)!}](https://tex.z-dn.net/?f=P%28n%2C%20r%29%20%3D%20%5Cdfrac%7Bn%21%7D%7B%28n-r%29%21%7D)
Putting the value of
= 8 and
, we get:
![P(8, 3) = \dfrac{8!}{(8-3)!} \\\Rightarrow \dfrac{8\times 7 \times 6 \times 5\times 4 \times 3 \times 2\times 1}{5\times 4 \times 3\times 2\times 1}\\\Rightarrow 8\times 7 \times 6 \\\Rightarrow 336](https://tex.z-dn.net/?f=P%288%2C%203%29%20%3D%20%5Cdfrac%7B8%21%7D%7B%288-3%29%21%7D%20%5C%5C%5CRightarrow%20%5Cdfrac%7B8%5Ctimes%207%20%5Ctimes%206%20%5Ctimes%205%5Ctimes%204%20%5Ctimes%203%20%5Ctimes%202%5Ctimes%201%7D%7B5%5Ctimes%204%20%5Ctimes%203%5Ctimes%202%5Ctimes%201%7D%5C%5C%5CRightarrow%208%5Ctimes%207%20%5Ctimes%206%20%5C%5C%5CRightarrow%20336)
B. Real world situation for part A:
Arranging 3 people on 8 chairs.
First person has 8 options.
Second person has 7 options.
Third person has 6 options.
C.
![P(n, r) = P(7, 2)](https://tex.z-dn.net/?f=P%28n%2C%20r%29%20%3D%20P%287%2C%202%29)
Formula for Permutation is given as:
![P(n, r) = \dfrac{n!}{(n-r)!}](https://tex.z-dn.net/?f=P%28n%2C%20r%29%20%3D%20%5Cdfrac%7Bn%21%7D%7B%28n-r%29%21%7D)
Putting the value of
= 7 and
= 2 , we get:
![P(7, 2) = \dfrac{7!}{(7-2)!} \\\Rightarrow \dfrac{7 \times 6 \times 5\times 4 \times 3 \times 2\times 1}{5\times 4 \times 3\times 2\times 1}\\\Rightarrow 7 \times 6 \\\Rightarrow 42](https://tex.z-dn.net/?f=P%287%2C%202%29%20%3D%20%5Cdfrac%7B7%21%7D%7B%287-2%29%21%7D%20%5C%5C%5CRightarrow%20%5Cdfrac%7B7%20%5Ctimes%206%20%5Ctimes%205%5Ctimes%204%20%5Ctimes%203%20%5Ctimes%202%5Ctimes%201%7D%7B5%5Ctimes%204%20%5Ctimes%203%5Ctimes%202%5Ctimes%201%7D%5C%5C%5CRightarrow%207%20%5Ctimes%206%20%5C%5C%5CRightarrow%2042)
D. Real world situation for part AC:
Arranging 2 people on 7 chairs.
First person has 7 options.
Second person has 6 options.