Answer:
1.)21°
2.)51°
3.)73°
4.)50°
Step-by-step explanation:
1.) 90° - 69°
= 21°
2.) 90° - 39°
= 51°
3.) 90° - 17°
= 73°
4.) 90° - 40°
= 50°
E) distributive property
Because you are distributing the 3 to 2/5x and 7/5y
In this section we are going to see how knowledge of some fairly simple graphs can help us graph some more complicated graphs. Collectively the methods we’re going to be looking at in this section are called transformations.
Vertical Shifts
The first transformation we’ll look at is a vertical shift.
If we write 4 to each side of 10, we will get a four digit number 4104, which is a multiple of 72.
To find out other possible solutions, first start with 1 in front of 10.
Now, divide 110 by 72.
The remainder is 38.
We are going to put one more digit after 10.
So, let us check if there is any three digit number whose first two digits are 38 and which is a multiple of 72.
There is no such number since 5 × 72 = 360 and 6 × 72 = 432.
So, there is no four digit number whose first three digits are 110 and which is a multiple of 72.
If we try like this, we can find 4104 is the only solution.
Answer:
Step-by-step explanation:
(cos A+ cos B)-cos C
![=2cos \frac{A+B}{2}cos \frac{A-B}{2}-cos C~~~...(1)\\A+B+C=180\\A+B=180-C\\\frac{A+B}{2}=90-\frac{C}{2}\\cos \frac{A+B}{2}=cos(90-\frac{C}{2})=sin \frac{C}{2}\\cos C=1-2sin^2\frac{C}{2}\\(1)=2 sin \frac{C}{2} cos \frac{A-B}{2}-1+2sin^2\frac{C}2}\\=2sin\frac{C}{2}[cos \frac{A-B}{2}+sin \frac{C}{2}]-1~~~...(2)\\\\now~again~A+B+C=180\\C=180-(A+B)\\sin\frac{C}{2}=sin(90-\frac{A+B}{2})=cos \frac{A+B}{2}\\(2)=2sin\frac {C}{2}[cos \frac{A-B}{2}+cos \frac{A+B}{2}]-1\\](https://tex.z-dn.net/?f=%3D2cos%20%5Cfrac%7BA%2BB%7D%7B2%7Dcos%20%5Cfrac%7BA-B%7D%7B2%7D-cos%20C~~~...%281%29%5C%5CA%2BB%2BC%3D180%5C%5CA%2BB%3D180-C%5C%5C%5Cfrac%7BA%2BB%7D%7B2%7D%3D90-%5Cfrac%7BC%7D%7B2%7D%5C%5Ccos%20%5Cfrac%7BA%2BB%7D%7B2%7D%3Dcos%2890-%5Cfrac%7BC%7D%7B2%7D%29%3Dsin%20%5Cfrac%7BC%7D%7B2%7D%5C%5Ccos%20C%3D1-2sin%5E2%5Cfrac%7BC%7D%7B2%7D%5C%5C%281%29%3D2%20sin%20%5Cfrac%7BC%7D%7B2%7D%20cos%20%5Cfrac%7BA-B%7D%7B2%7D-1%2B2sin%5E2%5Cfrac%7BC%7D2%7D%5C%5C%3D2sin%5Cfrac%7BC%7D%7B2%7D%5Bcos%20%5Cfrac%7BA-B%7D%7B2%7D%2Bsin%20%5Cfrac%7BC%7D%7B2%7D%5D-1~~~...%282%29%5C%5C%5C%5Cnow~again~A%2BB%2BC%3D180%5C%5CC%3D180-%28A%2BB%29%5C%5Csin%5Cfrac%7BC%7D%7B2%7D%3Dsin%2890-%5Cfrac%7BA%2BB%7D%7B2%7D%29%3Dcos%20%5Cfrac%7BA%2BB%7D%7B2%7D%5C%5C%282%29%3D2sin%5Cfrac%20%7BC%7D%7B2%7D%5Bcos%20%5Cfrac%7BA-B%7D%7B2%7D%2Bcos%20%5Cfrac%7BA%2BB%7D%7B2%7D%5D-1%5C%5C)
