Answer:
y = -3x - 1
Step-by-step explanation:
The slope intercept form of the equation of a line is:
y = mx + b
where m is the slope, and b is the y-intercept.
First, we find the slope of the line using the two given points.
m = slope = (y2 - y1)/(x2 - x1) = (2 - (-7))/(-1 - 2) = (2 + 7)/(-3) = 9/(-3) = -3
Now we plug in the slope we found into the equation above.
y = -3x + b
We need to find the value of b, the y-intercept. We use the coordinates of one of the given points for x and y, and we solve for b. Let's use point (2, -7), so x = 2, and y = -7.
y = -3x + b
-7 = -3(2) + b
-7 = -6 + b
Add 6 to both sides.
-1 = b
Now we plug in -1 for b.
y = -3x - 1
Answer:
The equation of the required line is y = x + 5
Step-by-step explanation:
The equation of the given line is y = x - 2
The required line = A line parallel to the given line
The point through which the required line passes = (-3, 2)
The general form of the equation of a straight line, is y = m·x + c
Where;
m = The slope of the line
By comparison, the slope of the given line, m = 1
When two lines are parallel, their slope are equal
Therefore, the slope of the required line = m = 1
The equation of the required line in point and slope form is therefore;
y - 2 = x - (-3) = x + 3
∴y = x + 3 + 2 = x + 5
The equation of the required line is therefore;
y = x + 5.
Answer:
B and C both equal 0.060 after evaluation.