Answer:
The solid ball and hollow ball both will reach the bottom with the same speed.
Explanation:
The speed of the solid and hollow balls is independent of the mass and the radius. A solid and hollow ball experience same speed on a given incline.
The speed can be calculated as
v = √(10/7)gh
where g is gravitational acceleration and h is the height
sinθ = h/L
h = L*sinθ
h = 3*sin(35)
h = 1.72 m
v = √(10/7)*9.8*1.72
v = 4.91 m/s
Both balls will reach the bottom at the speed of 4.91 m/s.
Answer:
114.44 J
Explanation:
From Hook's Law,
F = ke................. Equation 1
Where F = Force required to stretch the spring, k = spring constant, e = extension.
make k the subject of the equation
k = F/e.............. Equation 2
Given: F = 10 lb = (10×4.45) N = 44.5 N, e = 4 in = (4×0.254) = 1.016 m.
Substitute into equation 2
k = 44.5/1.016
k = 43.799 N/m
Work done in stretching the 9 in beyond its natural length
W = 1/2ke²................. Equation 3
Given: e = 9 in = (9×0.254) = 2.286 m, k = 43.799 N/m
Substitute into equation 3
W = 1/2×43.799×2.286²
W = 114.44 J
<span> Weight = mass x acceleration
Earths acceleration is 9.8 m/s*2
1 kg = 2.2 lbs, so 2.0 lbs x 1 kg/2.2 lbs = 0.91 kg
The bag would have a weight of 9.8 x 0.91 = 8.9 N
1. 8.9 x 1/6 = 1.5 N
2. 8.9 x 2.64 = 23.5 N
The mass of the bag at all three locations is 0.91 kg. Mass does not change, the different locations only change its weight. </span>
Answer:
?do you have a picture of the options orr ?
Explanation:
Answer:
<em>Hydrogen bond is the attractive force between the hydrogen attached electronegative atom </em>
Explanation: