1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
6

Consider f(x) = -4x2 + 24x + 3. Determine whether the function has a maximum or minimum value. Then find the

Physics
1 answer:
murzikaleks [220]3 years ago
4 0

Answer:

The function has a maximum in x=3

The maximum is:

f(3) = 39

Explanation:

Find the first derivative of the function for the inflection point, then equal to zero and solve for x

f(x)' = -4*2x + 24=0

-4*2x + 24=0

8x=24

x=3

Now find the second derivative of the function and evaluate at x = 3.

If f (3) ''< 0 the function has a maximum

If f (3) '' >0 the function has a minimum

f(x)''= 8

Note that:

f(3)''= -8

the function has a maximum in x=3

The maximum is:

f(3)=-4(3)^2+24(3) + 3\\\\f(3) = 39

You might be interested in
A lacrosse ball that is thrown straight upwards reaches a maximum height of 4.5 m. At what initial velocity was it thrown? (note
shtirl [24]

Answer:

The initial velocity was 9.39 m/s

Explanation:

<em>Lets explain how to solve the problem</em>

The ball is thrown straight upward with initial velocity u

The ball reaches a maximum height of 4.5 m

At the maximum height velocity v = 0

The acceleration of gravity is -9.8 m/s²

We need to find the initial velocity

The best rule to find the initial velocity is <em>v² = u² + 2ah</em>, where v is

the final velocity, u is the initial velocity, a is the acceleration of

gravity and h is the height

⇒ v = 0 , h = 4.5 m , a = -9.8 m/s²

⇒ 0 = u² + 2(-9.8)(4.5)

⇒ 0 = u² - 88.2

Add 88.2 to both sides

⇒ 88.2 = u²

Take square root for both sides

⇒ u = 9.39 m/s

<em>The initial velocity was 9.39 m/s</em>

5 0
3 years ago
How do you do this? Plz help answer
Contact [7]

Answer: Really

Explanation:

Just look it up for this page and maybe you will find an anwser sheet.

7 0
3 years ago
a car advertisement states that a certain car that Emily miller loves can accelerates from rest to 70 km/h in 7 seconds. find th
vova2212 [387]
10 km/1 second. Is this what you mean?..
7 0
4 years ago
Read 2 more answers
A rugby player sits on a scrum machine that weighs 200 Newtons. Given that the coefficient of static friction is 0.67, the coeff
Trava [24]

a. 850 N is the minimum force needed to get the machine/player system moving, which means this is the maximum magnitude of static friction between the system and the surface they stand on.

By Newton's second law, at the moment right before the system starts to move,

• net horizontal force

∑ F[h] = F[push] - F[s. friction] = 0

• net vertical force

∑ F[v] = F[normal] - F[weight] = 0

and we have

F[s. friction] = µ[s] F[normal]

It follows that

F[weight] = F[normal] = (850 N) / (0.67) = 1268.66 N

where F[weight] is the combined weight of the player and machine. We're given the machine's weight is 200 N, so the player weighs 1068.66 N and hence has a mass of

(1068.66 N) / g ≈ 110 kg

b. To keep the system moving at a constant speed, the second-law equations from part (a) change only slightly to

∑ F[h] = F[push] - F[k. friction] = 0

∑ F[v] = F[normal] - F[weight] = 0

so that

F[k. friction] = µ[k] F[normal] = 0.56 (1268.66 N) = 710.45 N

and so the minimum force needed to keep the system moving is

F[push] = 710.45 N ≈ 710 N

4 0
2 years ago
Suppose that a comet that was seen in 563 A.D. by Chinese astronomers was spotted again in year 1951. Assume the time between ob
Mars2501 [29]

Answer:

a=2.77*10^{13}m

R_a=5.49*10^{13}m

Explanation:

The period of the comet is the time it takes to do a complete orbit:

T=1951-(-563)=2514 years

writen in seconds:

2514years*\frac{3,154*10^7s}{1year}=7.93 *10^{10}s

Since the eccentricity is greater than 0 but lower than 1 you can know that the trajectory is an ellipse.

Therefore, if the mass of the sun is aprox. 1.99e30 kg, and you assume it to be much larger than the mass of the comet, you can use Kepler's law of periods to calculate the semimajor axis:

T^2=\frac{4\pi^2}{Gm_{sun}}a^3\\ a=\sqrt[3]{\frac{Gm_{sun}T^2}{4\pi^2} } \\a=1.50*10^{6}m

Then, using the law of orbits, you can calculate the greatest distance from the sun, which is called aphelion:

R_a=a(1+e)\\R_a=2.77*10^{13}(1.986)\\R_a=5.49*10^{13}m

8 0
3 years ago
Other questions:
  • What will be the acceleration of a 40-kilogram object that is pushed with a net force of 80 newtons?
    11·1 answer
  • What is the most important factor for the formation of our planets
    7·1 answer
  • Two resistors of resistances R1 and R2, with R2&gt;R1, are connected to a voltage source with voltage V0. When the resistors are
    11·1 answer
  • Am i correct? If not then which one
    12·1 answer
  • The magnetic flux that passes through one turn of a 26-turn coil of wire changes to 4.5 Wb from 12.0 Wb in a time of 0.034 s. Th
    7·1 answer
  • What amount of force is needed to propel and object of 27 kg to an acceleration of 11,550 m/s^2? (1 point)
    13·1 answer
  • A ball is thrown vertically upwards with a velocity
    13·1 answer
  • A bird lands on a bird feeder which is connected to a spring. The mass of the bird is exactly the same as the mass of the bird f
    11·1 answer
  • What is the formula of moment of force​
    15·1 answer
  • Bob ran at 5 m/s for 4 seconds and ended up at position 8 m. Where did he start
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!