<h2>
Its velocity when it crosses the finish line is 117.65 m/s</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = ?
Time, t = 6.8 s
Displacement, s = 1/4 mi = 400 meters
Substituting
s = ut + 0.5 at²
400 = 0 x 6.8 + 0.5 x a x 6.8²
a = 17.30 m/s²
Now we have equation of motion v = u + at
Initial velocity, u = 0 m/s
Final velocity, v = ?
Time, t = 6.8 s
Acceleration, a = 17.30 m/s²
Substituting
v = u + at
v = 0 + 17.30 x 6.8
v = 117.65 m/s
Its velocity when it crosses the finish line is 117.65 m/s
In a parallel connection, the equivalent resistance is the summation of the inverse of each individual resistances. It is mathematically expressed as 1/ Req = 1/10 +1/20 + 1/25 = 5.263 ohms. Also, the voltage across each resistor is equal to the input voltage, therefore I = 100 / 10 = 10 Amps. I hope this helped you.
We can substitute the given values into the equation for T, given the surrounding temperature T0 = 0, initial temperature T1 = 140, constant k = -0.0815, and time t = 15 minutes.
T = 0 + (140 - 0)e^(-0.0815*15) = 140e^(-1.2225) = 41.23°F
Answer: action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction
Explanation:
Answer:
Spaceship speed is 36000 km/h
So, in 1 hour spaceship travel 36000 km
Or we can say that in 60×60 second spaceship travel 36000 km
Therefore in 1 sec spaceship travel
=
= 10 km/s