Answer:
a) 2
b) 5
c) -1
d) x
Step-by-step explanation:
We know the properties of log function as:
1) log(AB) = log(A) + log(B)
2) 
3) log(aᵇ) = b × log(a)
also,
4) 
Given:
a. y = log₂(2²)
thus, using 3
y = 2log₂(2)
or using 4
y = 2 × 
or
y = 2 × 1 = 2
b. y = log₂(2⁵)
thus, using 3
y = 5 × log₂(2)
or using 4
y = 5 × 
or
y = 5 × 1 = 5
c. y = log₂(2⁻¹)
thus, using 3
y = -1 × log₂(2)
or using 4
y = -1 × 
or
y = -1 × 1 = -1
d. y = log₂(2ˣ)
thus, using 3
y = x × log₂(2)
or using 4
y = x × 
or
y = x × 1 = x
B. y=n+20; 25,26,27 because if you plug in 1 into the equation it equals
21. 2+20=22, etc. so to find the next three terms of the equation plug
in 5: y=5+20=25; plug in 6: y=6+20=26; and plug in 7: y=7+20=27
5/18 ÷ 2/6
5/18 * 6/2
30/36
5/6