Answer:
a) ⅓ units²
b) 4/15 pi units³
c) 2/3 pi units³
Step-by-step explanation:
4y = x²
2y = x
4y = (2y)²
4y = 4y²
4y² - 4y = 0
y(y-1) = 0
y = 0, 1
x = 0, 2
Area
Integrate: x²/4 - x/2
From 0 to 2
(x³/12 - x²/4)
(8/12 - 4/4) - 0
= -⅓
Area = ⅓
Volume:
Squares and then integrate
Integrate: [x²/4]² - [x/2]²
Integrate: x⁴/16 - x²/4
x⁵/80 - x³/12
Limits 0 to 2
(2⁵/80 - 2³/12) - 0
-4/15
Volume = 4/15 pi
About the x-axis
x² = 4y
x² = 4y²
Integrate the difference
Integrate: 4y² - 4y
4y³/3 - 2y²
Limits 0 to 1
(4/3 - 2) - 0
-2/3
Volume = ⅔ pi
Answer:
TRUE
Step-by-step explanation:
A quadratic equation can be found that will go through any three distinct points that ...
- satisfy the requirements for a function
- are not on the same line
_____
The key word here is "may." You will not be able to find a quadratic intersecting the three points if they do not meet both requirements above.
What? Add more detail please
Answer:
1st : neither linear nor nonlinear
2nd: nonlinear
3rd: linear
4th: both linear and nonlinear
Answer:
y = -8x - 1
Step-by-step explanation:
y = mx + b
7 = -8 (-1) + b Substitute in points for x and y. Substitute -8 for m (parallel)
7 = 8 + b
-1 = b