Answer:
when the rates of the forward and reverse reactions are equal
Explanation:
In a chemical system, the reaction reaches a dynamic equilibrium when the rate of formation of product equals the rate of formation of reactants. This implies that both the forward and revered(backwards) reaction are occurring at the same rate.
Answer:
Nuclear Fission.
Explanation:
This happens when a high-energy particle collides with a radioisotope, which splits into 2 daughter nuclei, several neutrons (which can collide with more radioisotopes to cause a chain reaction); and a lot of energy. That's why nuclear power plants are so good.
<h3>
Answer:</h3>
150000 J
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Thermodynamics</u>
Specific Heat Formula: q = mcΔT
- <em>q</em> is heat (in J)
- <em>m</em> is mass (in g)
- <em>c</em> is specific heat (in J/g °C)
- ΔT is change in temperature (in °C or K)
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] <em>m</em> = 225 g
[Given] <em>c</em> = 4.184 J/g °C
[Given] ΔT = 133 °C - -26.8 °C = 159.8 °C
[Solve] <em>q</em>
<u>Step 2: Solve for </u><em><u>q</u></em>
- Substitute in variables [Specific Heat Formula]: q = (225 g)(4.184 J/g °C)(159.8 °C)
- Multiply: q = (941.4 J/°C)(159.8 °C)
- Multiply: q = 150436 J
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
150436 J ≈ 150000 J
Topic: AP Chemistry
Unit: Thermodynamics
Book: Pearson AP Chemistry
setup 1 : to the right
setup 2 : equilibrium
setup 3 : to the left
<h3>Further explanation</h3>
The reaction quotient (Q) : determine a reaction has reached equilibrium
For reaction :
aA+bB⇔cC+dD
![\tt Q=\dfrac{C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Comparing Q with K( the equilibrium constant) :
K is the product of ions in an equilibrium saturated state
Q is the product of the ion ions from the reacting substance
Q <K = solution has not occurred precipitation, the ratio of the products to reactants is less than the ratio at equilibrium. The reaction moved to the right (products)
Q = Ksp = saturated solution, exactly the precipitate will occur, the system at equilibrium
Q> K = sediment solution, the ratio of the products to reactants is greater than the ratio at equilibrium. The reaction moved to the left (reactants)
Keq = 6.16 x 10⁻³
Q for reaction N₂O₄(0) ⇒ 2NO₂(g)
![\tt Q=\dfrac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
Setup 1 :

Q<K⇒The reaction moved to the right (products)
Setup 2 :

Q=K⇒the system at equilibrium
Setup 3 :

Q>K⇒The reaction moved to the left (reactants)
Answer:
Three things that can generate electrical energy is <u>coal, natural gas, and petroleum.</u> (They generate from fossil fuels).