---------------------------------------------------------------------------------------
Define their age
---------------------------------------------------------------------------------------
Let Jim be x years old
Jim = x
Father = x + 31 ← Jim is 31 years younger than the father
Grandfather = x + 70 ← Grandfather is 70 years older than Jim
---------------------------------------------------------------------------------------
Combined age is 137, find x
---------------------------------------------------------------------------------------
x + (x + 31) + (x + 70) = 137
x + x + 31 + x + 70 = 137
3x + 101 = 137
3x = 137 - 101
3x = 36
x = 12
---------------------------------------------------------------------------------------
Find their age
---------------------------------------------------------------------------------------
Jim = x = 12
Father = x + 31
Father = 12 + 31
Father = 43
Grandfather = x + 70
Grandfather = 12 + 70
Grandfather = 82
---------------------------------------------------------------------------------------
Answer: Jim = 12 ; Father = 43 ; Grandfather = 82
---------------------------------------------------------------------------------------
Answer:
y= -2x -4
Step-by-step explanation:
slope: rise/run = 2/-1 = -2
y-intercept: -4
Answer:
Step-by-step explanation:
Slope of perpendicular lines = -1
y = 5/2x + 3

-1 ÷ 
= 
(-3 , -5)
Equation of the required line: y - y₁ = m(x -x₁)
y - [5] = ![\frac{-2}{5}(x - [-3])\\](https://tex.z-dn.net/?f=%5Cfrac%7B-2%7D%7B5%7D%28x%20-%20%5B-3%5D%29%5C%5C)

Answer:
A) 2.5
Step-by-step explanation:

Answer:
f(x) = |x| - 7
Step-by-step explanation:
The given equation is g(x) = |x|......... (1)
The vertical translation by 7 units down will not change the value of x, the only change will be in the value of g(x).
The vertical translation by 7 units down will change the value of g(x) by [g(x) + 7] in the left-hand side of the equation (1).
Therefore, the equation will become g(x) + 7 = |x|
⇒ g(x) = |x| - 7.
Otherwise we can represent the function as some other name say f(x).
So, f(x) = |x| - 7. (Answer)