<span>70.4 mg CO2 x 1.0 g /1000 mg x 1 mole CO2/ 44 gCO2 x 1 mole C/1 mole CO2 = 0.0016 moles C
14.4 mg H2O x 1.0 g/1000 mg x 1 mole H2O/18 g H2O x 2 moles H/ 1 mole H2O = 0.0016 moles O
molar mass of C=12 g/mole
molar mass of H=1 g/mole
0.0016 moles C x 12 g C/ 1 mole C = 0.0192 g C or 19.2 mg C
0.00156 moles H x 1 g H/1 mole H = 0.00156 g H or 1.56 mg H
mg O= 30.4 mg vanillin - 19.2 mg C – 1.56 mg H = 9.64 mg O
molar mass of O=16 g/mole
9.64 mg O x 1 g/1000 mg x 1 mole O/16.0 g = 0.000602
C.0016 H.0016 O.000602; divide all the moles by the smallest value of0.000602
C2.66H2.66O1 is the empirical formula;
to obtain whole numbers multiply by 3
3[C2.66H2.66O1] = C8H8O3
above formula weight: 8(C) + 8(H) + 3(O) = 8(12) + 8(1) + 3(16) = 152 amu
The empirical formula weight and the molecular formula weight are the same .
Molecular formula is C8H8O3.</span>
<span> aluminum is an element. All elements are pure substances, so that means they are homogenous.
please mark as brainliest
</span>
Answer:
3.676 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have different values of V and T:
(V₁T₂) = (V₂T₁)
V₁ = 3.5 L, T₁ = 25°C + 273 = 298 K,
V₂ = ??? L, T₂ = 40°C + 273 = 313 K,
- Applying in the above equation
(V₁T₂) = (V₂T₁)
∴ V₂ = (V₁T₂)/(T₁) = (3.5 L)(313 K)/(298 K) = 3.676 L.
Answer:
correct option is (a)
The solution would be using this: C6H5COOH = H+ + C6H5COO Ka = 6.5 x 10^-5 = (H+)(C6H5COO-) over
(C6H5COOH)
Let X = moles per liter (H+) and also = moles per liter (C6H5COO-)
Ka = 6.5 x 10^-5 = (X)(X) over .350 molar = acid solution 6.5 x 10^-5 = X^2 over .350
X^2 = 6.5 x 10^-5 times .350 which = 2.275 x 10^-5
x = V2.275 x 10^-5
X = 1.5083 x 10^-5 moles per liter H+
pH = -log(H+) = -log 1.5083 x 10^-5 which
= 4.6215
<span>31.9 grams butane needed to produce 96.7 grams CO2
</span>