Answer:
hola soy jess, tu respuesta esta aqui
¿cuantos moles de CO2 se requiere para reaccionar 2 moles de Ba(OH)2
2 mol Ba(OH)₂ × \frac{1molCO_{2} }{1molBa (OH)_{2}}
1molBa(OH)
2
1molCO
2
= 2 moles CO₂
Explanation:
espero que pueda ayudarte
hermana/hermano
lo que
hahahaha
The electronic configuration is for iron (Fe) because if you add all those power up it will give you 26 and it’s the atomic number of Fe
Answer:
They increase the attractive forces between the solute and solvent particles.
Explanation:
The dissolution of a solute in a solvent depends on interaction between the solute and the solvent. The more the attractive force and interaction between solute and solvent, the greater the greater the rate of dissolution of the solute in the solvent.
The absence of interaction between solute and solvent molecules means that the substance can not dissolve in that particular solvent. Hence, any factor that enhances solute-solvent interaction will enhance dissolution of a solute in a particular solvent.
Explanation :
As we know that Mendeleev arranged the elements in horizontal rows and vertical columns of a table in order of their increasing relative atomic weights.
He placed the elements with similar nature in the same group.
According to the question, the atomic weight of iodine is less than the atomic weight of tellurium. So according to this, iodine should be placed before tellurium in Mendeleev's tables. But Mendeleev placed iodine after tellurium in his original periodic table.
However, iodine has similar chemical properties to chlorine and bromine. So, in order to make iodine queue up with chlorine and bromine in his periodic table, Mendeleev exchanged the positions of iodine and tellurium.
As we know that the positions of iodine and tellurium were reversed in Mendeleev's table because iodine has one naturally occurring isotope that is iodine-127 and tellurium isotopes are tellurium-128 and tellurium-130.
Due to high relative abundance of tellurium isotopes gives tellurium the greater relative atomic mass.