Answer:
We conclude that the total amount accrued, principal plus interest, from compound interest on an original principal of $2500 at a rate of 5% per year compounded 6 times per year over 8 years is $3723.38.
Step-by-step explanation:
Given
Principle P = $2500
Interest rate r = 5% = 0.05
Time period t = 8 years
To determine
Accrue Amount A = ?
Using the compound interest equation

where:
A represents the Accrue Amount
P represents the Principal Amount
r represents the interest rate
t represents the time period in years
n represents the number of compounding periods per unit t
Important tip:
- Given that the interest is compounded 6 times each year, therefore, the value of n = 6.
now substituting P = 2500, r = 0.05, t = 8 and n = 6 in the equation



∵ 
$
Therefore, we conclude that the total amount accrued, principal plus interest, from compound interest on an original principal of $2500 at a rate of 5% per year compounded 6 times per year over 8 years is $3723.38.
Answer:
Step-by-step explanation:

Check the picture below.
so the perimeter of the polygon is the sum of all its sides, namely, AB + BC + CD + DA.
now, let's check how long each side is,
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &A&(~{{ -6}} &,&{{ -4}}~) % (c,d) &B&(~{{ -3}} &,&{{ 6}}~) \end{array} \\\\\\ d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}\\\\ -------------------------------\\\\ AB=\sqrt{[-3-(-6)]^2+[6-(-4)]^2} \\\\\\ AB=\sqrt{(-3+6)^2+(6+4)^2} \\\\\\ AB=\sqrt{3^2+10^2}\implies \boxed{AB=\sqrt{109}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26A%26%28~%7B%7B%20-6%7D%7D%20%26%2C%26%7B%7B%20-4%7D%7D~%29%20%0A%25%20%20%28c%2Cd%29%0A%26B%26%28~%7B%7B%20-3%7D%7D%20%26%2C%26%7B%7B%206%7D%7D~%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%20%3D%20%5Csqrt%7B%28%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%29%5E2%20%2B%20%28%7B%7B%20y_2%7D%7D-%7B%7B%20y_1%7D%7D%29%5E2%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B%5B-3-%28-6%29%5D%5E2%2B%5B6-%28-4%29%5D%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B%28-3%2B6%29%5E2%2B%286%2B4%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0AAB%3D%5Csqrt%7B3%5E2%2B10%5E2%7D%5Cimplies%20%5Cboxed%7BAB%3D%5Csqrt%7B109%7D%7D%5C%5C%5C%5C%0A-------------------------------)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &B&(~{{ -3}} &,&{{6}}~) % (c,d) &C&(~{{ 4}} &,&{{ 0}}~) \end{array} \\\\ -------------------------------\\\\ BC=\sqrt{[4-(-3)]^2+[0-6]^2}\implies BC=\sqrt{(4+3)^2+(0-6)^2} \\\\\\ BC=\sqrt{7^2+(-6)^2}\implies \boxed{BC=\sqrt{85}}\\\\ -------------------------------](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26B%26%28~%7B%7B%20-3%7D%7D%20%26%2C%26%7B%7B6%7D%7D~%29%20%0A%25%20%20%28c%2Cd%29%0A%26C%26%28~%7B%7B%204%7D%7D%20%26%2C%26%7B%7B%200%7D%7D~%29%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0ABC%3D%5Csqrt%7B%5B4-%28-3%29%5D%5E2%2B%5B0-6%5D%5E2%7D%5Cimplies%20BC%3D%5Csqrt%7B%284%2B3%29%5E2%2B%280-6%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ABC%3D%5Csqrt%7B7%5E2%2B%28-6%29%5E2%7D%5Cimplies%20%5Cboxed%7BBC%3D%5Csqrt%7B85%7D%7D%5C%5C%5C%5C%0A-------------------------------)

![\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &D(~{{ 2}} &,&{{-1}}~) % (c,d) &A&(~{{ -6}} &,&{{ -4}}~) \end{array}\\\\ -------------------------------\\\\ DA=\sqrt{[-6-2]^2+[-4-(-1)]^2}\\\\\\ DA=\sqrt{(-6-2)^2+(-4+1)^2} \\\\\\ DA=\sqrt{(-8)^2+(-3)^2}\implies \boxed{DA=\sqrt{73}}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%5C%5C%20%5Cquad%20%5C%5C%0A%5Cbegin%7Barray%7D%7Bccccccccc%7D%0A%26%26x_1%26%26y_1%26%26x_2%26%26y_2%5C%5C%0A%25%20%20%28a%2Cb%29%0A%26D%28~%7B%7B%202%7D%7D%20%26%2C%26%7B%7B-1%7D%7D~%29%20%0A%25%20%20%28c%2Cd%29%0A%26A%26%28~%7B%7B%20-6%7D%7D%20%26%2C%26%7B%7B%20-4%7D%7D~%29%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0ADA%3D%5Csqrt%7B%5B-6-2%5D%5E2%2B%5B-4-%28-1%29%5D%5E2%7D%5C%5C%5C%5C%5C%5C%20DA%3D%5Csqrt%7B%28-6-2%29%5E2%2B%28-4%2B1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ADA%3D%5Csqrt%7B%28-8%29%5E2%2B%28-3%29%5E2%7D%5Cimplies%20%5Cboxed%7BDA%3D%5Csqrt%7B73%7D%7D)
sum those sides up, and that's the perimeter of the polygon.
The distance between the center and any point on the circle is the radius. That's likely what your book or teacher is asking for.
Note: double the radius and you get the diameter