Given that AB = 16, BC = 5, and CD = 3, which is the length of secant DE?It might be useful to see ...
Answer:
option (c)
Step-by-step explanation:
g.f= g(f(x))
= g(x2 -3)
= (x2 -3)+1
=x2 -2
Answer:
x= 37.5°
Step-by-step explanation:
∠CBD
= 180° -75° (adj. ∠s on a str. line)
= 105°
∠BCD= ∠BDC (base ∠s of isos. △BCD)
∠BCD= x
∠BCD +∠BDC +∠CBD= 180° (∠ sum of △BCD)
x +x +105°= 180°
2x= 180° -105°
2x= 75°
x= 37.5°
<u>Alternative</u><u> </u><u>working</u><u>:</u>
∠BDA= (180° -75°) ÷2 (base ∠s of isos. △ABD)
∠BDA= 52.5°
∠BDA +∠BDC= 90°
52.5° +x= 90°
x= 90° -52.5°
x= 37.5°
Answer:
Step-by-step explanation:
Points are (0,-2)(3,0)
Slope intercept form is y=2/3x-2