ANSWER
x = ±1 and y = -4.
Either x = +1 or x = -1 will work
EXPLANATION
If -3 + ix²y and x² + y + 4i are complex conjugates, then one of them can be written in the form a + bi and the other in the form a - bi. In other words, between conjugates, the imaginary parts are same in absolute value but different in sign (b and -b). The real parts are the same
For -3 + ix²y
⇒ real part: -3
⇒ imaginary part: x²y
For x² + y + 4i
⇒ real part: x² + y (since x, y are real numbers)
⇒ imaginary part: 4
Therefore, for the two expressions to be conjugates, we must satisfy the two conditions.
Condition 1: Imaginary parts are same in absolute value but different in sign. We can set the imaginary part of -3 + ix²y to be the negative imaginary part of x² + y + 4i so that the
x²y = -4 ... (I)
Condition 2: Real parts are the same
x² + y = -3 ... (II)
We have a system of equations since both conditions must be satisfied
x²y = -4 ... (I)
x² + y = -3 ... (II)
We can rearrange equation (II) so that we have
y = -3 - x² ... (II)
Substituting into equation (I)
x²y = -4 ... (I)
x²(-3 - x²) = -4
-3x² - x⁴ = -4
x⁴ + 3x² - 4 = 0
(x² + 4)(x² - 1) = 0
(x² + 4)(x-1)(x+1) = 0
Therefore, x = ±1.
Leave alone (x² + 4) as it gives no real solutions.
Solve for y:
y = -3 - x² ... (II)
y = -3 - (±1)²
y = -3 - 1
y = -4
So x = ±1 and y = -4. We can confirm this results in conjugates by substituting into the expressions:
-3 + ix²y
= -3 + i(±1)²(-4)
= -3 - 4i
x² + y + 4i
= (±1)² - 4 + 4i
= 1 - 4 + 4i
= -3 + 4i
They result in conjugates
they are giving you the answer AB=AC, so what that means is that the angles are congruent to each other so if angle AC=15 and angle DC=5 all the angles will be the same.
You are right. Transitivity means, that:
if a = b and b = c, then a = c
(here a = x, b=5 and c = y).
x =
or x = - 
consider the factors of the product 6 × - 4 = - 24 which sum to the coefficient of the x- term ( + 5)
the factors are + 8 and - 3 ( split the middle term using these factors
6x² - 3x + 8x - 4 = 0 ( factor by grouping )
3x(2x - 1) + 4(2x - 1 ) ( take out common factor of (2x - 1) )
= (2x - 1)(3x + 4) = 0
equate each factor to zero and solve for x
2x - 1 = 0 ⇒ x = 
3x + 4 = 0 ⇒ x = - 