Given, half life of a certain radioactive element = 800 years.
Amount of substance remaining at time t = 12.5%
Lets consider the initial amount of the radioactive substance = 100%
Using the half life equation:
A = A₀(1/2)^t/t₁/₂
where A₀ is the amount of radioactive substance at time zero and A is the amount of radioactive substance at time t, and t₁/₂ is the half-life of the radioactive substance.
Plugging the given data into the half life equation we have,
12.5 = 100 . (1/2)^t/800
12.5/100 = (1/2)^t/800
0.125 = (0.5)^t/800
(0.5)^3 = (0.5)^t/800
3 = t/800
t = 2400 years
Thus the object is 2400 years old.
Answer:
At one atmosphere and twenty-five degrees Celsius, could you turn it into a liquid by cooling it down? Um, and the key here is that the triple point eyes that minus fifty six point six degrees Celsius and it's at five point eleven ATMs. So at one atmospheric pressure, there's no way that you're ever going to reach the liquid days. So the first part of this question is the answer The answer to the first part of a question is no. How could you instead make the liquid at twenty-five degrees Celsius? Well, the critical point is at thirty-one point one degrees Celsius. So you know, if you're twenty-five, if you increase the pressure instead, you will briefly by it, be able to form a liquid. And if you continue Teo, you know, increase the pressure eventually form a salad, so increasing the pressure is the second part. If you increase the pressure of co two thirty-seven degrees Celsius, will you ever liquefy? No. Because then, if you're above thirty-one point one degrees Celsius in temperature. You'LL never be able to actually form the liquid. Instead, you'LL only is able Teo obtain supercritical co too, which is really cool thing. You know, they used supercritical sio tu tio decaffeinated coffee without, you know, adding a solvent that you'LL be able to taste, which is really cool. But no, you can't liquefy so two above thirty-one degrees Celsius or below five-point eleven atmospheric pressures anyway, that's how I answer this question. Hope this helped :)
More unstable an electron configuration , the more reactive an atom will become.
How electron configuration influences the chemical behavior of an atom?
This is happen generally, If we look at the Group 1 elements in the periodic table, they are all highly reactive as they have 1 electron in their outermost shells - an unstable configuration in terms of energy.
Also, the noble gases in Group 8 in the periodic table are 'inert' that means they don't react (or more correctly, have an incredibly low reactivity). This is because they have 8 electrons in their outermost shell and thus have no need to acquire or lose electrons to possess a stable electron configuration.
Hence, electron configuration influences the chemical behavior of an atom.
learn more about electronic configuration here :
brainly.com/question/26084288
#SPJ4
Answer:
The correct answer is "three groups of plants—a group fertilized by X, a group fertilized by Y, and a control group with no fertilizer".
Explanation:
I had to look for the problem to know the options.
The best way to determine which fertilizer is most effective is to have three evaluation groups. One group will be tested with fertilizer X and another with fertilizer Y. By leaving the third group without applying fertilizer, this will be the general pattern for comparing the effectiveness of the other two.
Have a nice day!