The graph shows a nonlinear function. This is because the line is not straight. I hope this helps :) <span />
Answer: complex equations has n number of solutions, been n the equation degree. In this case:
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i11,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi11%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i101,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi101%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i191,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi191%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i281,25°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi281%2C25%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i78,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi78%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i168,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi168%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i258,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi258%2C75%C2%B0%7D)
![Z=\frac{\sqrt[8]{2} }{\sqrt[4]{2}} e^{i348,75°}](https://tex.z-dn.net/?f=Z%3D%5Cfrac%7B%5Csqrt%5B8%5D%7B2%7D%20%7D%7B%5Csqrt%5B4%5D%7B2%7D%7D%20e%5E%7Bi348%2C75%C2%B0%7D)
Step-by-step explanation:
I start with a variable substitution:

Then:

Solving the quadratic equation:


Replacing for the original variable:
![Z=\sqrt[4]{0,5+0,5i}](https://tex.z-dn.net/?f=Z%3D%5Csqrt%5B4%5D%7B0%2C5%2B0%2C5i%7D)
or ![Z=\sqrt[4]{0,5-0,5i}](https://tex.z-dn.net/?f=Z%3D%5Csqrt%5B4%5D%7B0%2C5-0%2C5i%7D)
Remembering that complex numbers can be written as:

Using this:

Solving for the modulus and the angle:
![Z=\left \{ {{\sqrt[4]{\frac{\sqrt{2}}{2} e^{i45}} = \sqrt[4]{\frac{\sqrt{2}}{2} } \sqrt[4]{e^{i45}} } \atop {\sqrt[4]{\frac{\sqrt{2}}{2} e^{i-45}} = \sqrt[4]{\frac{\sqrt{2}}{2} } \sqrt[4]{e^{i-45}} }} \right.](https://tex.z-dn.net/?f=Z%3D%5Cleft%20%5C%7B%20%7B%7B%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20e%5E%7Bi45%7D%7D%20%3D%20%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%7D%20%5Csqrt%5B4%5D%7Be%5E%7Bi45%7D%7D%20%7D%20%5Catop%20%7B%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20e%5E%7Bi-45%7D%7D%20%3D%20%5Csqrt%5B4%5D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%7D%20%5Csqrt%5B4%5D%7Be%5E%7Bi-45%7D%7D%20%7D%7D%20%5Cright.)
The possible angle respond to:

Been "RAng" the resultant angle, "Ang" the original angle, "n" the degree of the root and "i" a value between 1 and "n"
In this case n=4 with 2 different angles: Ang = 45º and Ang = 315º
Obtaining 8 different angles, therefore 8 different solutions.
First understand that this is a linear graph. Find 2 points on the graph. We can use (0,1) and (3,-3).
Look at how much the x increases, in this case the x value increases by 0+3, so 3.
Then see how much the y value increases (make sure to evaluate them in the same order) 1 + (-3) = -2.
So you know that the y value decreases by 2 units for every 3 unit increase in x. Therefore the slope is y=(-2/3)x
Then figure out what you add to the end. The y intercept is (0,1), so add 1 to the end of y=(-2/3)x to move it up.
Your resulting eq is y=(-2/3)x+1
8)
is -0.896 radians
9) length of arc is 41.91 cm
Solution:
8)
Given that,

is in quadrant 4
To find: 
From given,

Thus value of
is -51.34 degrees
Convert degrees to radians

Thus
is -0.896 radians
9)
From given,
radius = 15.4 cm

<em><u>The length of arc when angle in radians is:</u></em>

Thus length of arc is 41.91 cm
Answer:
B) The base graph has been reflected about the y-axis
Step-by-step explanation:
We are given the function,
.
Now, as we know,
The new function after transformation is
.
<em>As, the function f(x) is changing to g(x) = f(-x)</em> and from the graph below, we see that,
The base function is reflected across y-axis.
Hence, option B is correct.