So basically the objects would be sandpaper and smooth metal, the sandpaper can indirectly touch the metal since it’s so smooth and it won’t cause any temp change either
The correct answer for this question is this one: "measuring the temperature increase of water from doing work stirring it." This experiment is generally regarded as being first carried out by James Joule is this one, <span>measuring the temperature increase of water from doing work stirring it.</span>
You said that she's losing 1.9 m/s of her speed every second.
So it'll take
(6 m/s) / (1.9 m/s²) = 3.158 seconds (rounded)
to lose all of her initial speed, and stop.
The answer is D) neutral water reacts with carbon dioxide to form an acid solution
Answer:
(c) no different than on a low-pressure day.
Explanation:
The force acting on the ship when it floats in water is the buoyant force. According to the Archimedes' principle: The magnitude of buoyant force acting on the body of the object is equal to the volume displaced by the object.
Thus, Buoyant forces are a volume phenomenon and is determined by the volume of the fluid displaced.
<u>Whether it is a high pressure day or a low pressure day, the level of the floating ship is unaffected because the increased or decreased pressure at the all the points of the water and the ship and there will be no change in the volume of the water displaced by the ship.</u>