Answer:
Static, sliding, and rolling friction occur between solid surfaces. Static friction is strongest, followed by sliding friction, and then rolling friction, which is weakest. Fluid friction occurs in fluids, which are liquids or gases.
Explanation:
Answer:
the tension of the rope is 34.95 N
Explanation:
Given;
length of the rope, L = 3 m
mass of the rope, m = 0.105 kg
frequency of the wave, f = 40 Hz
wavelength of the wave, λ = 0.79 m
Let the tension of the rope = T
The speed of the wave is given as;

Therefore, the tension of the rope is 34.95 N
<span>it will be changed by changing the medium of the wave</span>
Answer:
time required after impact for a puck is 2.18 seconds
Explanation:
given data
mass = 30 g = 0.03 kg
diameter = 100 mm = 0.1 m
thick = 0.1 mm = 1 ×
m
dynamic viscosity = 1.75 ×
Ns/m²
air temperature = 15°C
to find out
time required after impact for a puck to lose 10%
solution
we know velocity varies here 0 to v
we consider here initial velocity = v
so final velocity = 0.9v
so change in velocity is du = v
and clearance dy = h
and shear stress acting on surface is here express as
= µ 
so
= µ
............1
put here value
= 1.75×
× 
= 0.175 v
and
area between air and puck is given by
Area =
area =
area = 7.85 ×
m²
so
force on puck is express as
Force = × area
force = 0.175 v × 7.85 × 
force = 1.374 ×
v
and now apply newton second law
force = mass × acceleration
- force = 
- 1.374 ×
v = 
t = 
time = 2.18
so time required after impact for a puck is 2.18 seconds