Answer:
C
Step-by-step explanation:
We can solve simultaneous equations using substitution method, elimination method or graphical method. But for this purpose, we will be using the elimination method.
3x+4y=8 Equation 1
2x+y=42 Equation 2
Multiply Equation 1 by 2 and equation 2 by 3, so as to get the same coefficient for x
2(3x+4y=8)= 6x+8y=16 Equation 3
3(2x+y=42)= 6x+3y=126 Equation 4
Subtract equation 4 from 3, to eliminate x
6x-6x=0
8y-3y= 5y
16-126= -110
We now have 5y=-110
Divide both sides by 5,
y= -110/5
= -22
Substituting for y in equation 2
2x+(-22)= 42
2x= 42+22
2x=64
x= 64/2
= 32
(x, y)
(32, -22)
It would be 75 cents per song, I hope you get a good grade!
Answer:
C.$0.60
hope this help!!!!!!!!!!!!!!!!!!!!!!
Looks like a badly encoded/decoded symbol. It's supposed to be a minus sign, so you're asked to find the expectation of 2<em>X </em>² - <em>Y</em>.
If you don't know how <em>X</em> or <em>Y</em> are distributed, but you know E[<em>X</em> ²] and E[<em>Y</em>], then it's as simple as distributing the expectation over the sum:
E[2<em>X </em>² - <em>Y</em>] = 2 E[<em>X </em>²] - E[<em>Y</em>]
Or, if you're given the expectation and variance of <em>X</em>, you have
Var[<em>X</em>] = E[<em>X</em> ²] - E[<em>X</em>]²
→ E[2<em>X </em>² - <em>Y</em>] = 2 (Var[<em>X</em>] + E[<em>X</em>]²) - E[<em>Y</em>]
Otherwise, you may be given the density function, or joint density, in which case you can determine the expectations by computing an integral or sum.
Answer:
The origin is where the x-axis and the x-axis equal zero. Carter is 15 points up from the origin on the y-axis and 3 points to the right from the origin on the x-axis.