Another triple integral. We're integrating over the interior of the sphere

Let's do the outer integral over z. z stays within the sphere so it goes from -2 to 2.
For the middle integral we have

x is the inner integral so at this point we conservatively say its zero. That means y goes from
and 
Similarly the inner integral x goes between 
So we rewrite the integral

Let's work on the inner one,

There's no z in the integrand, so we treat it as a constant.

So the middle integral is
I gotta go so I'll stop here, sorry.
Answer:
A
Step-by-step explanation:
Answer:
Let x, y be the two numbers under consideration. Then, x+y<2 and x-y>1.
So hmm the food C = 6p + 3q and the food D = 4.5p + 1.5q
now, if we check how much is the ratios of C/D for each component, then, mixture M = 144p + 60q, must contain the same ratio for each "p" and "q" component

so, if we divide the 144p by 4+3, or 7 even pieces, 4 must belong to food C and 3 to food D, retaining the ratio of 4/3
and we do the same for 60q, we divide it in 2+1 or 3 even pieces, but that one is very clear, 2 must belong to food C and 1 to food D, 60/3 is clear ends up with a ratio of 40 and 20
now the "p" part... ends up as

that's what I see it, as the ratio of 4/3 and 2/1 being retained in the mixture M
The line will remain unchanged because you are just and only dilating the rectangle. I hope this helps :).-