This is a problem you need to solve using logs. When you use logs you can "pull" the exponents down in front of the log to get a new equation that looks like this: 2x^3 + x^2 log 81 = 6x - 3 log 27. Now divide both sides by log 81 and 6x - 3 simultaneously to get (2x^3 + x^2)/(6x - 3) = (log 27)/(log 81). If you do the log math on the right side you get .75. Now multiply both sides by 6x-3 to get 2x^3+x^2 = .75(6x-3). If you distribute that out on the left side you'll get 2x^3+x^2=4.5x-2.25. Now move everything over to the left side and set the whole thing equal to 0: 2x^3+x^2-4.5x+2.25=0. When you solve for x, you are in essence factoring, so do this by grouping: x^2(2x+1)-2.25(2x+1). Now finally factor out the 2x+1 to get (2x+1)(x^2-2.25). You're not done yet though cuz you need to solve each of those for x: 2x+1=0, and x= -1/2; x^2=2.25, and x=+/- 1.5. So all the values for x here are -1/2, 1.5, and -1.5
Answer:
84
Step-by-step explanation:
97+97=194 because a rectangle has 2 long sides.
362-194=168
168/2=84
Width=84 cm
No. 0.158 is less than 0.58
Answer:
Answer is z= 43/36
Step-by-step explanation:
We have given,
2 13/18 - z = 1 19/36
Since 2 13/18 = 49/18 and 1 19/36 = 55/36
So we can write,
2 13/18 - z = 1 19/36
or 49/18 - z = 55/36
or 49/18 - 55/36 = z
or (98 -55)/36 = z
or 43/36 = z
Hence we got z = 43/36
Answer:
Mauricio nació en el año 2000.
Step-by-step explanation:
Supóngase que el cumpleaños se celebra en el año 2020, si
es la edad actual de Mauricio, entonces la expresión matemática que traduce el enunciado del problema es:

Ahora, se desarrolla y se simplifica la ecuación:

Se despeja
:


Mauricio tiene 20 años.
Ahora, el año de nacimiento de Mauricio es la sustracción de la edad de Mauricio del año actual:


Mauricio nació en el año 2000.