1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DaniilM [7]
2 years ago
8

Find a power series for the function, centered at c, and determine the interval of convergence. f(x) = 9 3x + 2 , c = 6

Mathematics
1 answer:
san4es73 [151]2 years ago
6 0

Answer:

\frac{9}{3x + 2} = 1 - \frac{1}{3}(x - \frac{7}{3}) + \frac{1}{9}(x - \frac{7}{3})^2 - \frac{1}{27}(x - \frac{7}{3})^3 ........

The interval of convergence is:(-\frac{2}{3},\frac{16}{3})

Step-by-step explanation:

Given

f(x)= \frac{9}{3x+ 2}

c = 6

The geometric series centered at c is of the form:

\frac{a}{1 - (r - c)} = \sum\limits^{\infty}_{n=0}a(r - c)^n, |r - c| < 1.

Where:

a \to first term

r - c \to common ratio

We have to write

f(x)= \frac{9}{3x+ 2}

In the following form:

\frac{a}{1 - r}

So, we have:

f(x)= \frac{9}{3x+ 2}

Rewrite as:

f(x) = \frac{9}{3x - 18 + 18 +2}

f(x) = \frac{9}{3x - 18 + 20}

Factorize

f(x) = \frac{1}{\frac{1}{9}(3x + 2)}

Open bracket

f(x) = \frac{1}{\frac{1}{3}x + \frac{2}{9}}

Rewrite as:

f(x) = \frac{1}{1- 1 + \frac{1}{3}x + \frac{2}{9}}

Collect like terms

f(x) = \frac{1}{1 + \frac{1}{3}x + \frac{2}{9}- 1}

Take LCM

f(x) = \frac{1}{1 + \frac{1}{3}x + \frac{2-9}{9}}

f(x) = \frac{1}{1 + \frac{1}{3}x - \frac{7}{9}}

So, we have:

f(x) = \frac{1}{1 -(- \frac{1}{3}x + \frac{7}{9})}

By comparison with: \frac{a}{1 - r}

a = 1

r = -\frac{1}{3}x + \frac{7}{9}

r = -\frac{1}{3}(x - \frac{7}{3})

At c = 6, we have:

r = -\frac{1}{3}(x - \frac{7}{3}+6-6)

Take LCM

r = -\frac{1}{3}(x + \frac{-7+18}{3}+6-6)

r = -\frac{1}{3}(x + \frac{11}{3}+6-6)

So, the power series becomes:

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}ar^n

Substitute 1 for a

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}1*r^n

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}r^n

Substitute the expression for r

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}(-\frac{1}{3}(x - \frac{7}{3}))^n

Expand

\frac{9}{3x + 2} =  \sum\limits^{\infty}_{n=0}[(-\frac{1}{3})^n* (x - \frac{7}{3})^n]

Further expand:

\frac{9}{3x + 2} = 1 - \frac{1}{3}(x - \frac{7}{3}) + \frac{1}{9}(x - \frac{7}{3})^2 - \frac{1}{27}(x - \frac{7}{3})^3 ................

The power series converges when:

\frac{1}{3}|x - \frac{7}{3}| < 1

Multiply both sides by 3

|x - \frac{7}{3}|

Expand the absolute inequality

-3 < x - \frac{7}{3}

Solve for x

\frac{7}{3}  -3 < x

Take LCM

\frac{7-9}{3} < x

-\frac{2}{3} < x

The interval of convergence is:(-\frac{2}{3},\frac{16}{3})

You might be interested in
2(2³-2²)<br><br> Can you also show how you solved it? Thanks.
valina [46]
The answer is 2[2^2(2-1)]=2*4*1=8
7 0
3 years ago
Read 2 more answers
Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm.
melamori03 [73]

Answer:

6+2\sqrt{21}\:\mathrm{cm^2}\approx 15.17\:\mathrm{cm^2}

Step-by-step explanation:

The quadrilateral ABCD consists of two triangles. By adding the area of the two triangles, we get the area of the entire quadrilateral.

Vertices A, B, and C form a right triangle with legs AB=3, BC=4, and AC=5. The two legs, 3 and 4, represent the triangle's height and base, respectively.

The area of a triangle with base b and height h is given by A=\frac{1}{2}bh. Therefore, the area of this right triangle is:

A=\frac{1}{2}\cdot 3\cdot 4=\frac{1}{2}\cdot 12=6\:\mathrm{cm^2}

The other triangle is a bit trickier. Triangle \triangle ADC is an isosceles triangles with sides 5, 5, and 4. To find its area, we can use Heron's Formula, given by:

A=\sqrt{s(s-a)(s-b)(s-c)}, where a, b, and c are three sides of the triangle and s is the semi-perimeter (s=\frac{a+b+c}{2}).

The semi-perimeter, s, is:

s=\frac{5+5+4}{2}=\frac{14}{2}=7

Therefore, the area of the isosceles triangle is:

A=\sqrt{7(7-5)(7-5)(7-4)},\\A=\sqrt{7\cdot 2\cdot 2\cdot 3},\\A=\sqrt{84}, \\A=2\sqrt{21}\:\mathrm{cm^2}

Thus, the area of the quadrilateral is:

6\:\mathrm{cm^2}+2\sqrt{21}\:\mathrm{cm^2}=\boxed{6+2\sqrt{21}\:\mathrm{cm^2}}

4 0
3 years ago
Pedro simplified 4/7 * 8/5 ; his work is shown below. Identify where he made his error. Original division problem: 4/7 * 8/5 Ste
scoray [572]
I am not sure but I would say either step 2 or 4 but I am not 100% sure I hope you do well. Good Luck:) 
4 0
3 years ago
Read 2 more answers
Which lengths could be the sides of a triangle?
galina1969 [7]
345,354,354,341,098cm
5 0
3 years ago
Help ASAP!!!<br> Please and thank you<br> For the 2nd and 3rd one
Shalnov [3]

I’m pretty sure the 2nd one is the associate property and the 3rd one is the additive inverse property

Hope this helps :)

5 0
3 years ago
Other questions:
  • What value will make the equation true?<br><br> -2.1 - ? = -1 1/2
    15·2 answers
  • Julia spent $54 on a book the cost of the book was $20 less than twice what she spent on a backpack how much did the backpack co
    9·1 answer
  • What are the conjugates of 4x^2+ 8x + 5=0
    9·1 answer
  • Round $8.597 to the nearest cent<br> $8.60<br> $8.59<br> $8.69<br> $8.50
    12·1 answer
  • Can someone pls help me with this thanks
    8·1 answer
  • Please answer this question now
    6·1 answer
  • Bill is depositing money into a money market account. Let y represent the total amount of money in the account (in dollars). Let
    5·1 answer
  • Jenny says that no row or column contains products with only odd Numbers. Dos you agree? Explain
    12·2 answers
  • The drawing below shows 3 parking lots that enclose a shopping mall shaped like a right triangle. If Lot A’s perimeter is 40 mil
    11·2 answers
  • (Using the table provided)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!