Yes. Conceptually, all the matrices in the group have the same structure, except for the variable component
. So, each matrix is identified by its top-right coefficient, since the other three entries remain constant.
However, let's prove in a more formal way that
![\phi:\ \mathbb{R} \to G,\quad \phi(x) = \left[\begin{array}{cc}1&x\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cphi%3A%5C%20%5Cmathbb%7BR%7D%20%5Cto%20G%2C%5Cquad%20%5Cphi%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20)
is an isomorphism.
First of all, it is injective: suppose
. Then, you trivially have
, because they are two different matrices:
![\phi(x) = \left[\begin{array}{cc}1&x\\0&1\end{array}\right],\quad \phi(y) = \left[\begin{array}{cc}1&y\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cphi%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%2C%5Cquad%20%5Cphi%28y%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26y%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20)
Secondly, it is trivially surjective: the matrix
![\phi(x) = \left[\begin{array}{cc}1&x\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cphi%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20)
is clearly the image of the real number x.
Finally,
and its inverse are both homomorphisms: if we consider the usual product between matrices to be the operation for the group G and the real numbers to be an additive group, we have
![\phi (x+y) = \left[\begin{array}{cc}1&x+y\\0&1\end{array}\right] = \left[\begin{array}{cc}1&x\\0&1\end{array}\right] \cdot \left[\begin{array}{cc}1&y\\0&1\end{array}\right] = \phi(x) \cdot \phi(y)](https://tex.z-dn.net/?f=%20%5Cphi%20%28x%2By%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%2By%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26y%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cphi%28x%29%20%5Ccdot%20%5Cphi%28y%29)
Answer:
0.09125%
Step-by-step explanation:
Divide 73 by 800 and you will get 0.09125
Angles at right-angle add up to 90 degrees
The measure of acute angle Tryon Street forms with Barton Road is <em>33 degrees</em>
The angle is given as:
---- <em>Angle formed by Tryon Street with Olive Tree Lane. </em>
The measure of the acute angle formed by Tryon Street with Barton Road (B) is calculated using:
---- angle at right-angle
Make B the subject

Substitute 57 for A


Hence, the measure of acute angle is 33 degrees
Read more about acute angles at:
brainly.com/question/10334248
El concepto básico de la función es que puede tomar cualquier número de valores, pero puede devolver solo un valor. La función es como una máquina en la que podemos darle una entrada / algo y obtener una salida o un conjunto de salidas. La entrada o el conjunto de entradas se llama dominio.
Sorry I Don't Speak Spanish That Good