Something that a right triangle is characterised by is the fact that we may use Pythagoras' theorem to find the length of any one of its sides, given that we know the length of the other two sides. Here, we know the length of the hypotenuse and one other side, therefor we can easily use the theorem to solve for the remaining side.
Now, Pythagoras' Theorem is defined as follows:
c^2 = a^2 + b^2, where c is the length of the hypotenuse and a and b are the lengths of the other two sides.
Given that we know that c = 24 and a = 8, we can find b by substituting c and a into the formula we defined above:
c^2 = a^2 + b^2
24^2 = 8^2 + b^2 (Substitute c = 24 and a = 8)
b^2 = 24^2 - 8^2 (Subtract 8^2 from both sides)
b = √(24^2 - 8^2) (Take the square root of both sides)
b = √512 (Evaluate 24^2 - 8^2)
b = 16√2 (Simplify √512)
= 22.627 (to three decimal places)
I wasn't sure about whether by 'approximate length' you meant for the length to be rounded to a certain number of decimal places or whether you were meant to do more of an estimate based on your knowledge of surds and powers. If you need any more clarification however don't hesitate to comment below.
40+25+25+70=160 Hope this helps! :)
It is usual to represent ratios in their simplest form so that we are not operating with large numbers. Reducing ratios to their simplest form is directly linked to equivalent fractions.
For example: On a farm there are 4 Bulls and 200 Cows. Write this as a ratio in its simplest form.
Bulls <span>: </span>Cows
4 <span>: </span>200
If we halve the number of bulls then we must halve the number of cows so that the relationship between the bulls and cows stays constant. This gives us:
Bulls <span>: </span>Cows
2 <span>: </span>100
Halving again gives us
1 <span>: </span>50
So the ratio of Bulls to Cows equals 1 : 50. The ratio is now represented in its simplest form.
An example where we have 3 quantities.
On the farm there are 24 ducks, 36 geese and 48 hens.
Ratio of ducks <span>: </span>geese <span>: </span>hens
24 <span>: </span>36 <span>: </span>48
Dividing each quantity by 12 gives us
2 <span>: </span>3 : 4
So the ratio of ducks to geese to hens equals 2 : 3 : 4 which is the simplest form since we can find no further common factor.
If u round tha to the nearest 10th it’s 4.8
12.3 meters because of the 10 meters she jumped plus the 2.3 she went down equals 10+2.3=12.3