Answer:
A
Step-by-step explanation:
I did the assignment :>
Answer:
r≈21.01cm
Step-by-step explanation:
I think that's the exact answer
Answer:
P = 0.006
Step-by-step explanation:
Given
n = 25 Lamps
each with mean lifetime of 50 hours and standard deviation (SD) of 4 hours
Find probability that the lamp will be burning at end of 1300 hours period.
As we are not given that exact lamp, it means we have to find the probability where any of the lamp burning at the end of 1300 hours, So we have
Suppose i represents lamps
P (∑i from 1 to 25 (
> 1300)) = 1300
= P(
>
) where
represents mean time of a single lamp
= P (Z>
) Z is the standard normal distribution which can be found by using the formula
Z = Mean Time (
) - Life time of each Lamp (50 hours)/ (SD/
)
Z = (52-50)/(4/
) = 2.5
Now, P(Z>2.5) = 0.006 using the standard normal distribution table
Probability that a lamp will be burning at the end of 1300 hours period is 0.006
Answer: There is not a good prediction for the height of the tree when it is 100 years old because the prediction given by the trend line produced by the regression calculator probably is not valid that far in the future.
Step-by-step explanation:
Years since tree was planted (x) - - - - height (y)
2 - - - - 17
3 - - - - 25
5 - - - 42
6 - - - - 47
7 - - - 54
9 - - - 69
Using a regression calculator :
The height of tree can be modeled by the equation : ŷ = 7.36X + 3.08
With y being the predicted variable; 7.36 being the slope and 3.08 as the intercept.
X is the independent variable which is used in calculating the value of y.
Predicted height when years since tree was planted(x) = 100
ŷ = 7.36X + 3.08
ŷ = 7.36(100) + 3.08
y = 736 + 3.08
y = 739.08
Forward prediction of 100 years produced by the trendline would probably give an invalid value because the trendline only models a range of 9 years prediction. However, a linear regression equation isn't the best for making prediction that far in into the future.