1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
HACTEHA [7]
3 years ago
10

Draw the image of AABC under a dilation whose center is P and scale factor is 2. ​

Mathematics
1 answer:
Elan Coil [88]3 years ago
5 0
Just use quizlet and you’ll get all the answers
You might be interested in
Consider the following theorem. Theorem If f is integrable on [a, b], then b a f(x) dx = lim n→[infinity] n i = 1 f(xi)Δx where
mel-nik [20]

Split up the interval [1, 9] into <em>n</em> subintervals of equal length (9 - 1)/<em>n</em> = 8/<em>n</em> :

[1, 1 + 8/<em>n</em>], [1 + 8/<em>n</em>, 1 + 16/<em>n</em>], [1 + 16/<em>n</em>, 1 + 24/<em>n</em>], …, [1 + 8 (<em>n</em> - 1)/<em>n</em>, 9]

It should be clear that the left endpoint of each subinterval make up an arithmetic sequence, so that the <em>i</em>-th subinterval has left endpoint

1 + 8/<em>n</em> (<em>i</em> - 1)

Then we approximate the definite integral by the sum of the areas of <em>n</em> rectangles with length 8/<em>n</em> and height f(x_i) :

\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx \approx \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right)

Take the limit as <em>n</em> approaches infinity and the approximation becomes exact. So we have

\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx = \lim_{n\to\infty} \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right) \\\\ = \lim_{n\to\infty} \frac8n \sum_{i=1}^n \left(1+\frac{16}n(i-1)+\frac{64}{n^2}(i-1)^2-4-\frac{32}n(i-1)+6\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=1}^n \left(64(i-1)^2-16n(i-1)+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=0}^{n-1} \left(64i^2-16ni+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(64\sum_{i=0}^{n-1}i^2 - 16n\sum_{i=0}^{n-1}i + 3n^2\sum{i=0}^{n-1}1\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{64(2n-1)n(n-1)}{6} - \frac{16n^2(n-1)}{2} + 3n^3\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{49n^3}3-24n^2+\frac{32n}3\right) \\\\= \lim_{n\to\infty} \frac{8\left(49n^2-72n+32\right)}{3n^2} = \boxed{\frac{392}3}

3 0
3 years ago
15.3+1h=1.3−1h15, point, 3, plus, 1, h, equals, 1, point, 3, minus, 1, h h =h=h, equals
Oksi-84 [34.3K]

Answer: h= 6

Step-by-step explanation:

6 0
2 years ago
Read 2 more answers
Explain the level of uncertainties involve in concept of probability. The next generation of miniaturized wireless capsules with
RUDIKE [14]

Answer:

a) the probability that Both motors will operate satisfactorily in the capsule 0.6222

b) the probability that One motor will operate satisfactorily and the other will not is 0.3556

Step-by-step explanation:

Given that;

total number of motors N = 10

number of motors will not operate satisfactory m = 2

number of motors randomly selected n = 2

let X be number of motors will that will not operate successfully

here, X≅Hyper geometric (x; N,n,m)

The probability mass function of x is;

P (X = x)=  { m }   {N - m }

                  {x }    {n - x}

        ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

                     { N }

                     { n  }

a)

the probability that both motors will operate satisfactorily in the capsule i.e no motor will not operate satisfactory

so

P(X= 0)  = { 2 }    { 10 - 2 }

                 {0 }    { 2 - 0}

        ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

                     { 10 }

                     { 2  }

so

P (X = 0)  = { 2 }   { 8}

              {  0 }   { 2  }

        ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

                     { 10 }

                     { 2  }

p(P= 0)=1×28 / 45 = 28/45 = 0.6222

Therefore the probability that Both motors will operate satisfactorily in the capsule 0.6222

b)

the probability that one motor will operate satisfactorily and the other will not.

P(X=1)  = { 2 }   { 10 - 2 }

              {  1 }    { 2 - 1  }

        ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

                     { 10 }

                     { 2  }

so

P(X=1)  = { 2 }   { 8 }

              {  1 }   { 1  }

        ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻

                     { 10 }

                     { 2  }

P(X=1)  = 2×8 / 45 = 16/45 = 0.3556

Therefore the probability that One motor will operate satisfactorily and the other will not is 0.3556

3 0
3 years ago
How do i solve this problem?
Dominik [7]

Answer:

Step-by-step explanation:

surface area of one  can 2πrh+2πr²

=2πr(h+r)

≈2×3.14×3/2(4.25+1.5)

≈9.42(5.75)

≈54.165 in²

number of cans=1000/54.165

=18 cans

material used=18×54.165≈975 in²

material left=1000-975=25 in²

3 0
3 years ago
Two samples were taken of fish caught on Small Lake and are shown in the table below. It is estimated that the Sm
kolezko [41]

Answer:

its 80 on edg

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Nina mixed three different solutions in her lab. Solution A has a volume of liter. Solution B has a volume of liter. Solution C
    13·1 answer
  • Please can someone help me asap
    8·1 answer
  • Given a soda can with a volume of 36 and a diameter of 4, what is the volume of a cone that fits perfectly inside the soda can?
    8·2 answers
  • Jessica’s Spanish test scores are 98, 74, 88, 83, 91, and 85. Find the range, median, first and third quartiles, and interquarti
    8·2 answers
  • GameStop has the Xbox One advertised for 15% off the original price of $350, plus 6% sales tax. Online Xbox One is advertised at
    7·1 answer
  • 15 points. Please explain your answer thanks so much.:)
    8·1 answer
  • Pls help, I suck at percentage lol
    15·1 answer
  • Lily has 7 fewer ribbons than Dora. Lily has 13 ribbons. How many ribbons does Dora have?
    14·1 answer
  • Urgent!! what is the perimeter of this figure?
    7·2 answers
  • The bearing of P from Q is 046º.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!