Answer:
Yes
Step-by-step explanation:
Since we are adding two polynomials
The sum will also be polynomial
If each linear dimension is scaled by a factor of 10, then the area is scaled by a factor of 100. This is because 10^2 = 10*10 = 100. Consider a 3x3 square with area of 9. If we scaled the square by a linear factor of 10 then it's now a 30x30 square with area 900. The ratio of those two areas is 900/9 = 100. This example shows how the area is 100 times larger.
Going back to the problem at hand, we have the initial surface area of 16 square inches. The box is scaled up so that each dimension is 10 times larger, so the new surface area is 100 times what it used to be
New surface area = 100*(old surface area)
new surface area = 100*16
new surface area = 1600
Final Answer: 1600 square inches
The total area of the room is 37.6376 and the no. of cans required to paint the wall is 3 cans.
The measurement of two of the walls is 2.86 metres and 3.16 metre
Area of the two walls = 2(length x breadth)
Area = 2(2.86 x 3.16) = 18.0752 m²
The measurement of the other two walls is 2.86 metres and 3.42 metres
Area of the two walls = 2(length × breadth)
Area = 2(2.86 × 3.42) = 19.5624 m²
Total area = 18.0752 + 19.5624 = 37.6376 m²
If one can of paint can cover 15 m², the no. of cans required to paint the bedroom will be
No. of cans = Total area/Area covered by one can of paint
No. of cans = 37.6376/15 = 2.5091 = 3 cans (approx.)
The square is 130 in squared and the other shape is 54 in squared. If you're looking for the sum of the whole thing, its 185 in squared.
square: 13*10=130
triangle: 7*4= 28/2=14
rectangle: 10*4=40