Answer:
The answer is C) 678 cm2 :)
Step-by-step explanation:
Answer:
1. $3.00+42=$3.42
2. 4 Dimes , 2 Pennies
Step-by-step explanation:
2. 4 Dimes = 40 cents , 2 pennies = 2 cents
1. Add up 3.00+42 and that is how you could get the answer for number 1 .
Answer:
Algorithm
Start
Int n // To represent the number of array
Input n
Int countsearch = 0
float search
Float [] numbers // To represent an array of non decreasing number
// Input array elements but first Initialise a counter element
Int count = 0, digit
Do
// Check if element to be inserted is the first element
If(count == 0) Then
Input numbers[count]
Else
lbl: Input digit
If(digit > numbers[count-1]) then
numbers[count] = digit
Else
Output "Number must be greater than the previous number"
Goto lbl
Endif
Endif
count = count + 1
While(count<n)
count = 0
// Input element to count
input search
// Begin searching and counting
Do
if(numbers [count] == search)
countsearch = countsearch+1;
End if
While (count < n)
Output count
Program to illustrate the above
// Written in C++
// Comments are used for explanatory purpose
#include<iostream>
using namespace std;
int main()
{
// Variable declaration
float [] numbers;
int n, count;
float num, searchdigit;
cout<<"Number of array elements: ";
cin>> n;
// Enter array element
for(int I = 0; I<n;I++)
{
if(I == 0)
{
cin>>numbers [0]
}
else
{
lbl: cin>>num;
if(num >= numbers [I])
{
numbers [I] = num;
}
else
{
goto lbl;
}
}
// Search for a particular number
int search;
cin>>searchdigit;
for(int I = 0; I<n; I++)
{
if(numbers[I] == searchdigit
search++
}
}
// Print result
cout<<search;
return 0;
}
Answer:
- A) A = 27.3°, B = 56.1°, C = 96.6°
Step-by-step explanation:
<u>Use the Law of Cosines:</u>
- A = arccos [(b² + c² - a²)/(2bc)] = arccos [(13.2² + 15.8² - 7.3²)/(2*13.2*15.8)] = 27.3°
- B = arccos [(a² + c² - b²)/(2ac)] = arccos [(7.3² + 15.8² - 13.2²)/(2*7.3*15.8)] = 56.1°
- C = 180° - (A + B) = 180° - (27.3° + 56.1°) = 96.6°
Correct choice is A.
Answer:
f(- 4) = 12
Step-by-step explanation:
To evaluate f(- 4) substitute x = - 4 into f(x) , that is
f(- 4) = - 8 - 5(- 4) = - 8 + 20 = 12