1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
S_A_V [24]
3 years ago
9

A stiff wire 50.0 cm long is bent at a right angle in the middle. One section lies along the z axis and the other is along the l

ine y=2x in the xy plane. A current of 20.0 A flows in the wire --- down the z axis and out the line in the xy plane. The wire passes through a uniform magnetic field B = (.318 i)T. Determine the magnitude and the direction of the total force on the wire.
Physics
2 answers:
zloy xaker [14]3 years ago
5 0

Answer:

Magnitude of the force is 2.135N and the direction is 41.8° below negative y-axis

Explanation:

The stiff wire 50.0cm long bent at a right angle in the middle

One section lies along the z axis and the other is along the line y=2x in the xy plane

\frac{y}{x} = 2

tan θ = 2

Therefore,

slope m = tan θ = y / x

\theta=\tan^-^1(2)=63.4^0

Then length of each section is 25.0cm

so, length vector of the wire is

\hat I= (-25.0)\hat k +(25.0) \cos 63.4^0 \hati +(25.0) \sin63.4^0 \hatJ\\\\\hat I = (11.2) \hat i + (22.4) \hat j - (23.0) \hat k

And magnetic field is B = (0.318T)i

Therefore,

\bar F = \hat I (\bar l \times \bar B)

\bar F = (20.0)[(0.112m)i +(0.224m)j-(0.250m)k \times 90.318T)i]

= (20.0)(i(0)+j(-0.250)(0.318T)+k[0-(0.224m)(0.318T)]\\\\=(20.0)(-0.250)(0.318)j-(20.0)(0.224)(0.318T)\\\\=-(1.59N)j-(1.425N)k

Magnitude of the force is

F = \sqrt{(-1.59N)^2+(-1.425N)^2\\} \\F = 2.135N

Direction is

\alpha = \tan^-^1(\frac{-1.425N}{-1.59N} )\\\\= 41.8^0

Magnitude of the force is 2.135N and the direction is 41.8° below negative y-axis

elixir [45]3 years ago
3 0

Answer:

F=2.38i - 4.57j

magnitude of F=5.15N

Explanation:

The force on the wire is given by

F=Il \ X B

in this problem we have to compute the force for both sections if the wire. Hence we have

F=Il_1\ X B+Il_2\ X B\\\\

The direction of l1 is k. The direction of l2 is obtained by using the slope of the line y=2x

tan\theta =2\\\theta=63.43\°\\l_2=(0.5cos(63.43))\hat{i}+(0.5sin(63.43))\hat{j}=0.22\hat{i}+0.89\hat{j}

By applying the cross product we have

F=-(20.0A)(0.5m)(0.318T)\hat{j}+(20.0A)(0.445m)(0.318T)\hat{i}-(20.0A)(0.22m)(0.318T)\hat{j}\\\\F=-3.18N\hat{j}+2.83N\hat{i}-1.39N\hat{j}=2.38N\hat{i}-4,57N\hat{j}

and its magnitude is

|F|=\sqrt{(2.38)^2+(4.57)^2}=5.15N

HOPE THIS HELPS!!

You might be interested in
A 25.0 g marble sliding to the right at 20.0 cm/s overtakes and collides elastically with a 10.0 g marble moving in the same dir
vovikov84 [41]
In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,

   KE1  = KE2

The kinetic energy of the system before the collision is solved below.

  KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
  KE1 = 6125 g cm²/s²

This value should also be equal to KE2, which can be calculated using the conditions after the collision.

KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)

The value of x from the equation is 17.16 cm/s.

Hence, the answer is 17.16 cm/s. 
6 0
3 years ago
The light bulb converts electrical energy into light and ____. A) chemical B) electromagnetic C) heat D) nuclear
morpeh [17]
The light bulb converts electrical energy into light and heat. 


Good luck! (:
7 0
3 years ago
Read 2 more answers
a cyclist coasting down a 5.0 ◦ incline at a constant speed of 6.0 km/h because of air resistance. If the total mass of the bicy
Dvinal [7]

Answer:

F_{net}= 85.41\ N

Explanation:

mass of the bicycle + cyclist = 50 kg

constant speed = 6 km/h

a cyclist coasting down a 5.0° incline

the downward velocity is constant, so net acceleration must be zero

the air drag must be equal to gravitational force downward along the ramp

F_a = mg sin \theta  

now for upward motion

F_{net} = mg sin \theta + air\ drag

F_{net} = mg sin \theta + mg sin \theta

F_{net} = 2 mg sin \theta

F_{net} = 2\times 50 \times 9.8 sin 5^0

F_{net}= 85.41\ N

3 0
4 years ago
suggest an experiment to prove that the rate of evaporation of a liquid depends on its surface area vapour already present in su
gulaghasi [49]
That's two different things it depends on:

-- surface area exposed to the air
AND
-- vapor already present in the surrounding air.

Here's what I have in mind for an experiment to show those two dependencies:

-- a closed box with a wall down the middle, separating it into two closed sections;

-- a little round hole in the east outer wall, another one in the west outer wall,
and another one in the wall between the sections;
So that if you wanted to, you could carefully stick a soda straw straight into one side,
through one section, through the wall, through the other section, and out the other wall.

-- a tiny fan that blows air through a tube into the hole in one outer wall.

<u>Experiment A:</u>

-- Pour 1 ounce of water into a narrow dish, with a small surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
-- Pour 1 ounce of water into a wide dish, with a large surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
<span><em>Show that the 1 ounce of water evaporated faster </em>
<em>when it had more surface area.</em></span>
============================================
============================================

<u>Experiment B:</u>

-- Again, pour 1 ounce of water into the wide dish with the large surface area.
-- Again, set the dish in the second half of the box ... the one the air passes
through just before it leaves the box.
-- This time, place another wide dish full of water in the <em>first section </em>of the box,
so that the air has to pass over it before it gets through the wall to the wide dish
in the second section.  Now, the air that's evaporating water from the dish in the
second section already has vapor in it before it does the job.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
==========================================
<em>Show that it took longer to evaporate when the air </em>
<em>blowing over it was already loaded with vapor.</em>
==========================================
6 0
3 years ago
Find the mass of an object if a 40 N of force causes the object to accelerate at 5.5 m/s/s
Murrr4er [49]

Answer:

<h3>The answer is 8 kg</h3>

Explanation:

The mass of the object can be found by using the formula

m =  \frac{f}{a}  \\

f is the force

a is the acceleration

From the question we have

m =  \frac{40}{5}  \\

We have the final answer as

<h3>8 kg</h3>

Hope this helps you

7 0
3 years ago
Other questions:
  • True or false Variables are those factors that can be changed in an experiment
    9·1 answer
  • Identify the direction (from high to low, from low to high) that heat is normally transferred and give an example. (WILL GIVE BR
    12·1 answer
  • Graphically determine the resultant of the following three vector displacements: (1) 34 m, 25º north of east; (2) 48 m, 33° east
    7·1 answer
  • A 980 kg roller coaster cart is traveling along a track at 17 m/s before it rolls down a 30 m tall hill (Point A). What will be
    13·1 answer
  • What is the energy equivalent of an object with a mass of 2.5 kg?
    5·2 answers
  • What is the density of an object with the mass of 125g and a volume of 176 m
    12·2 answers
  • A man of weight Wman is standing on the second floor and is pulling on a rope to lift a box of weight Wbox from the floor below.
    11·1 answer
  • A gas expands against a constant external pressure of 2.00 atm until its volume has increased from 6.00 to 10.00 L. During this
    5·1 answer
  • . Are there human health risks from exposure (or overexposure) to X-rays? If so:
    6·2 answers
  • If the Earth’s mass decreased, how would the gravity between the Sun and Earth change?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!