Answer:
7.35m/s²
Explanation:
From the question we are not told what to find but we can as well find the acceleration of the wagon.
According to newton second law of motion

Fm is the moving force = 410N
is the coefficient of friction = 0.18
m is the mass = 45kg
g is the acceleration dur to gravity = 9.8m/s²
a is the acceleration of the wagon
Substitute the given data into the equation ang get ax

Hence the acceleration of the wagon is 7.35m/s²
The acceleration of gravity is inversely proportional to
the square of the distance from Earth's center.
The acceleration of gravity is 9.8 m/s² on the Earth's surface ...
6380 km from the center.
If the acceleration of gravity at 'h' is 4.9 m/s² ... 1/2 of what it is
on the surface, then the distance from the center is
(6380 x √2) = 9,023 km (rounded) ,
and 'h' is the distance above the surface
= (9,023 - 6,380) = 2,643 km (rounded) .
Something to do with how the suns magnetic field interacts with the surface plasmas I think.
Answer:
λ = 5.656 x 10⁻⁷ m = 565.6 nm
Explanation:
Using the formula of fringe spacing from the Young's Double Slit experiment, which is given as follows:

where,
λ = wavelength = ?
Δx = fringe spacing = 1.6 cm = 0.016 m
L = Distance between slits and screen = 4.95 m
d = slit separation = 0.175 mm = 0.000175 m
Therefore,

<u>λ = 5.656 x 10⁻⁷ m = 565.6 nm</u>