Answer:

Explanation:
Using the Law of Conservation of Momentum, we can set up the following equation:
, where
is Bruce's momentum and
.
Plugging in given values, we get:
.
Answer:
R = 1.8 m
Explanation:
This is a simple harmonic movement exercise, at the bottom of the swing the acceleration is vertical upwards and the speed is tangential to the trajectory, that is horizontal; the expression for the centralized acceleration is
= v² / R
R = v² /a_{c}
where the radius is equal to the length of the swing
let's calculate
R = 8.1 / 4.5
R = 1.8 m
C. Frequency is a measure of how many waves pass by in one second.
Answer:
112.06 kg - Thats heavy !
Explanation:
Let's do force balance here. Let the object of our interest be George. The forces acting on him are the tension in the upward direction, his weight in the downward direction and the centrifugal force in the downward direction. Considering the upward and downward directions on the y-axis and f=given the fact that George doesn't move up or down, the forces are balanced along the y-axis. Hence doing force balance:
magnitude of forces upward =magnitude of forces downward
i.e., Tension(T) = Weight(mg) + Centrifugal force (mv²/r)
where: 'm' is the mass of George, g is the acceleration due to gravity (9.8 m/s²). v is the speed with which George moves (14.1 m/s) and r is the radius of the circle in which he's moving at the instant (Here since he's swinging on the rope, he moves in a circle with radius as the length of the rope and hence r=7.3m).
therefore, T = m (9.8 + (14.1)²/7.3) = 4150 N
Therefore, m = 112.06 kg
Answer:
8962.5 N
Explanation:
From fundamental kinematics equations, acceleration, a is given by
where v is final velocity, u is initial velocity and t is time
We also know that force is a product of mass and acceleration of an object and substituting
in the formula F=ma we obtain
where m is the mass of the body

Therefore, the force is 8962.5 N