Answer:
in graph A the vertex is (0,0)
in graph B the vertex is (0,3)
in graph C the vertex is (0,-3)
And in graph D the vertex is (0,-1)
The axis of symmetry for all of the is 0
And i don't remember maximum and minimum sorry
Answer:
2, the second number line.
Step-by-step explanation:
-1 x 1/2 = -0.5
Answer:
Step-by-step explanation:
Following changes will be there when the figure is transformed by the given rules.
1). Rule for transformation has been given as,
(x, y) → (x, -y)
Reflection across x axis.
2). (x, y) → (-x, -y)
Rotation of 180° about the origin.
3). (x, y) → (x - 4, y)
Shifted 4 units left horizontally.
4). (x, y) → (x, y + 3)
Shifted vertically up by 3 units
5). (x, y) → (x - 1, y + 4)
Shifted 1 units left horizontally and 4 units up vertically.
6). (x, y) → (4x, 4y)
Dilated by 4 units.
Answer:
The two step equation that we can use to find michael's age is x = (f-2)/4 where f = 30. So Michael is 7 years old.
Step-by-step explanation:
In order to solve this problem we will attribute variables to the ages of Michael and his father. For his father age we will attribute a variable called "f" and for Michael's age we will attribute a variable called "x". The first information that the problem gives us is that Michael's dad is 30 years of age, so we have:
f = 30
Then the problem states that the age of the father is 2 years "more" than four "times" Michaels age. The "more" implies a sum and the "times" implies a product, so we have:
f = 2 + 4*x
We can now find Michael's age, for that we need to isolate the "x" variable. We have:
f - 2 = 4*x
4*x = f - 2
x = (f-2)/4
x = (30 - 2)/4 = 7 years
The two step equation that we can use to find michael's age is x = (f-2)/4 where f = 30. So Michael is 7 years old.
Answer:
Her weekly expenses is $234
Step-by-step explanation:
At $7.20 per kilogram
From selling 90 kg, she will have
$7.20 × 90
= $648
If her net profit is $414
To get her expenses, we subtract net profit from total income
$648 - $414
= $234