Answer:
1680 ways
Step-by-step explanation:
Total number of integers = 10
Number of integers to be selected = 6
Second smallest integer must be 3. This means the smallest integer can be either 1 or 2. So, there are 2 ways to select the smallest integer and only 1 way to select the second smallest integer.
<u>2 ways</u> <u>1 way</u> <u> </u> <u> </u> <u> </u> <u> </u>
Each of the line represent the digit in the integer.
After selecting the two digits, we have 4 places which can be filled by 7 integers. Number of ways to select 4 digits from 7 will be 7P4 = 840
Therefore, the total number of ways to form 6 distinct integers according to the given criteria will be = 1 x 2 x 840 = 1680 ways
Therefore, there are 1680 ways to pick six distinct integers.
The lower bound is 147.5 and the upper bound is 152.5.
Given the weight of an apple 150 g rounded to the nearest 5g.
We have to find lower bound and upper bound.
Lower bound is an element less than or equal to all the elements in a given set.
Upper bound is an element greater than all the elements in a given set.
Lower bound= Number 1- (Number nearest to which number 1 is rounded)/2
Upper bound=Number 1+(number nearest to which number 1 is rounded)/2
Weight of an apple =150 g
Lower bound=150-5/2
=150-2.5
=147.5
Upper bound=150+5/2
=150+2.5
=152.5
Hence the lower bound is 147.5 and upper bound is 152.5.
Learn more about lower and upper bounds at brainly.com/question/15408313
#SPJ4
Answer:
1. 87
A77
B24
C93
D47
E 31
F 48
2. 160
A10
B20
C30
D40
E 50
F 60
3. 68
A851
B295
C302
D574
E 112
F 638
4. 174
A3
B4
C5
D 6
E 7
F 8
5. a
A180-a
B180/2
C 179*a
D 179+a
E 60
F pi
Find the complementary angles of the following.
6. 53
A90
B32
C 25
D 45
E 18
F 37
7. 12
A46
B78
C98
D31
E 52
F 64
8. 73.5
A16.5
B34.2
C29.4
D17.7
E 57.9
F 11.3
9. 23.7
A66.3
B70.1
C42.5
D83.9
E 54.8
F 36.2
10. a
A90/a
Ba-90
Ca/2
D90-a
E 90-2
F a^2
Two of the angles are listed. Find the measure of the third angle in each triangle. Similar to example 6
11. 16,42
A256
B421
C107
D510
E 122
F 329
12. 90, 30
A23
B42
C47
D60
E 71
F 89
13. 43, 118
A12
B34
C19
D57
E 11
F 27
14. 60, 60
A15
B90
C29
D60
E 30
F 45
15. 14, 123
A73
B25
C38
D19
E 43
F 13
16. 68, 86
A45
B56
C26
D19
E 32
F 82
17. 55, 77
A18
B37
C62
D57
E 20
F 48
18. a, (a + 80)
A100 - 2a
B112 - 7a
C182 - 2a
D254 - 5a
E 311 - 3a
F 302 - 1a
19. x, (x + 20)
A189 - 7x
B167 - 1x
C114 - 5x
D160 - 2x
E 124 - 2x
F 142 - 1x
20. m, 2m
A172 - 2m
B187 - 7m
C124 - 4m
D143 - 1m
E 164 - 9m
F 180 - 3m
1. C
2. B
3. E
4. D
5. D
6. F
7. B
8. A
9. A
10. B
11. D
12. A
13. D
14. B
15. A
16. C
17. F
18. A
19. D
20. F
Step-by-step explanation: