Answer:
Step-by-step explanation: in the table:
top box 5, bottom left box 3, bottom middle box 3
<em>given,</em>
<em>measure of sides of the</em><em> </em><em>square = 12 cm</em>
<em>we know,</em><em> </em><em>diagonal</em>
<em>d = a√2</em>
<em>now,</em>
<em>d = 12√2</em>
<em>d </em><em>=</em><em> </em><em>1</em><em>6</em><em>.</em><em>9</em><em>7</em><em>0</em><em> </em>
<em>a/</em><em>q </em><em>we </em><em>have </em><em>to </em><em>round</em><em> </em><em>the </em><em>answer </em><em>to </em><em>the </em><em>nearest</em><em> </em><em>centimetres</em>
<em>so,</em><em> </em>
<em>it </em><em>is </em><em>1</em><em>7</em><em> </em><em>cm</em>
<em>hope </em><em>this</em><em> answer</em><em> helps</em><em> you</em><em> dear</em><em>!</em><em> </em><em>take </em><em>care!</em>
Answer:
45°
Step-by-step explanation:
Ok, so, there is one thing I need to point out. 45° is the 'main' value if you assume 0°<A<180°. However, sin, cos, and tan have different periods which means that there are infinite values of A where tanA = 1. The general notation that you could put is A = 45° + (n*180°) where n is just a number. For example, if n = 1, you would get an angle of 225°. If you plug tan225° into the calculator, you get 1. If you did radians, you could write A =
. But ignore that if you haven't. Basically, the answer would be 45° if you are assuming A is between 0° and 180°. Also, you could have just used your calculator and types inverse tan function (
) and plug in 1 to find the primary answer of 45.