Problem 3: Let x = price of bag of pretzels Let y = price of box of granola bars
We have Lesley's purchase: 4x+2y=13.50
And Landon's: 1x+5y=17.55
We can use the elimination method. Let's negate Landon's purchase by multiplying by -1. -1x-5y=-17.55
We add this four times to Lesley's purchase to eliminate the x variable.
2y-20y=13.50-70.2
-18y=-56.7
y = $3.15 = Price of box of granola bars
Plug back into Landon's purchase to solve for pretzels.
x+5*3.15=17.55
x+15.75=17.55
x = $1.80 = price of bag of pretzels
Problem 4.
Let w = number of wood bats sold
Let m = number of metal bats sold
From sales information we have: w + m = 23
24w+30m=606
Substitution works well here. Solve for w in the first equation, w = 23 - m, and plug this into the second.
24*(23-m)+30m=606
552-24m+30m=606
6m=54
m=9 = number of metal bats sold
Therefore since w = 23-m, w = 23-9 = 14. 14 wooden bats were sold.
Answer:
The answer will be D. (2,4)
To prove a similarity of a triangle, we use angles or sides.
In this case we use angles to prove
∠ACB = ∠AED (Corresponding ∠s)
∠AED = ∠FDE (Alternate ∠s)
∠ABC = ∠ADE (Corresponding ∠s)
∠ADE = ∠FED (Alternate ∠s)
∠BAC = ∠EFD (sum of ∠s in a triangle)
Now we know the similarity in the triangles.
But it is necessary to write the similar triangle according to how the question ask.
The question asks " ∆ABC is similar to ∆____. " So we find ∠ABC in the prove.
∠ABC corressponds to ∠FED as stated above.
∴ ∆ABC is similar to ∆FED
Similarly, if the question asks " ∆ACB is similar to ∆____. "
We answer as ∆ACB is similar to ∆FDE.
Answer is ∆ABC is similar to ∆FED.
Answer:
(2.25 , 0.75)
Step-by-step explanation:
solution is where the graphs intersect each other
3/4 = - x + 3
-x = 3/4 -3 = -2 1/4
x =2 1/4