Answer:
Musah's final point from the centre = 60.355 steps
Step-by-step explanation:
From the given information:
Musah stands at the centre of a rectangular field. He first takes 50 steps north, then 25 steps west and finally 50 steps on a bearing of 315°
The sketch for this information can be seen in the attached file below.
How far west is Musah's final point from the centre?
In order to determine how far west is Musah's,
Let d be the distance of how far;
Then d = QR + RS cos θ
In the North West direction,
cos θ = cos 45°
d = 25 + 50( cos 45°)
d = 25 + 50(
)
d = 25 + 50( 0.7071)
d =25 + 35.355
d = 60.355 steps
Musah's final point from the centre = 60.355 steps
(-7,3) here is the answer, easy one
Jehdhhdnro wiwjjebeuii ejwjwhhwuabhe
The answer is 2 = p
Explanation: Here the goal is to get the variable "p" by itself, so first your have to distribute 2 to (p-12) which gives you -10p = 2p-24. Then you add 10p on both sides so that the variable is on one side. Then you add 24 to both sides. After that you divide 12 from both sides, giving you 2 = P
-10P = 2(p-12)
-10p = 2p-24
+10p +10p
0 = 12p-24
+24 +24
24 = 12p
24÷12 = 12p÷12
2 = p
Answer: the answer is 1
Step-by-step explanation: