Answer:
x<6/5, x>14/5
Step-by-step explanation:
Steps
$5\left|x-2\right|+4>8$
$\mathrm{Subtract\:}4\mathrm{\:from\:both\:sides}$
$5\left|x-2\right|+4-4>8-4$
$\mathrm{Simplify}$
$5\left|x-2\right|>4$
$\mathrm{Divide\:both\:sides\:by\:}5$
$\frac{5\left|x-2\right|}{5}>\frac{4}{5}$
$\mathrm{Simplify}$
$\left|x-2\right|>\frac{4}{5}$
$\mathrm{Apply\:absolute\:rule}:\quad\mathrm{If}\:|u|\:>\:a,\:a>0\:\mathrm{then}\:u\:<\:-a\:\quad\mathrm{or}\quad\:u\:>\:a$
$x-2<-\frac{4}{5}\quad\mathrm{or}\quad\:x-2>\frac{4}{5}$
Show Steps
$x-2<-\frac{4}{5}\quad:\quad x<\frac{6}{5}$
Show Steps
$x-2>\frac{4}{5}\quad:\quad x>\frac{14}{5}$
$\mathrm{Combine\:the\:intervals}$
$x<\frac{6}{5}\quad\mathrm{or}\quad\:x>\frac{14}{5}$
Answer:
2.42
Step-by-step explanation:
standard deviation= sqrt(variance)
Variance=E[X2] - E[X]2
E[X] = sum(X)/n=35/9, so E[X]2 = 1225/81
E[X2] =sum(X2)/n = 189/9 = 170/81
Variance= 476/81
Standard deviation = sqrt(476/81) ~2.42
Answer:
-1/3
Step-by-step explanation:
A^2+b^2=c^2
(2sqrt3)^2+b^2=16
12+b^2=16
solve for b
b=2
Now triangle area is A=1/2 bh
so
A=(1/2)(2)(2sqrt3)
A=2sqrt3
The expression which can be used to solve this problem is 5.50h + 1.5h.
Since the given data is 44.5 hour week, all we need to do is substitute the given data to the expression. Since it takes 56 hours a week for a complete office/working hour without overtime, Joel's 44.5 hour week means he did not have overtime hours. Therefore the solution is,
5.50(44.5) = 244.75 Dollars.