Answer:
<em>The speed of the plane in still air is 590 mph</em>
<em>The speed of the wind is 20 mph</em>
Step-by-step explanation:
Let's call:
x = Speed of the plane in still air
y = Speed of the wind
The plane traveled d=4575 miles with the wind in t=7.5 h. The speed calculated with this data corresponds to the sum of the speed of the plane and the speed of the wind, thus:

x + y = 610 [1]
The plane traveled 4275 miles in 7.5 hours against the wind, thus the speed calculated is x - y:

x - y = 570 [2]
Adding [1] and [2]:
2x = 610 + 570 = 1180
x = 1180 / 2 = 590
From [1]:
y = 610 - 590 = 20
The speed of the plane in still air is 590 mph
The speed of the wind is 20 mph
C. 14 feet because 4+4+3+3 equals 14
Answer:
$30 is not a lot of Capita so every $ needs to count!
Step-by-step explanation:
Budget well.
Answer:

Step-by-step explanation:
![\ln \dfrac{4y^5}{x^2}\\\\=\ln(4y^5) - \ln(x^2)~~~~~~~~~~~;\left[ \log_b\left( \dfrac mn \right) = \log_b m - \llog_b n \right]\\\\=\ln 4 + \ln y^5 - 2\ln x~~~~~~~~~~~~;[\log_b m^n = n \log_b m ~\text{and}~\log_b(mn) = \log_b m + \log_b n ]\\\\=\ln 4 + 5 \ln y -2 \ln x\\\\=\ln 4 -2 \ln x +5 \ln y](https://tex.z-dn.net/?f=%5Cln%20%5Cdfrac%7B4y%5E5%7D%7Bx%5E2%7D%5C%5C%5C%5C%3D%5Cln%284y%5E5%29%20-%20%5Cln%28x%5E2%29~~~~~~~~~~~%3B%5Cleft%5B%20%5Clog_b%5Cleft%28%20%5Cdfrac%20mn%20%5Cright%29%20%20%3D%20%5Clog_b%20m%20-%20%5Cllog_b%20n%20%5Cright%5D%5C%5C%5C%5C%3D%5Cln%204%20%2B%20%5Cln%20y%5E5%20-%202%5Cln%20x~~~~~~~~~~~~%3B%5B%5Clog_b%20m%5En%20%3D%20n%20%5Clog_b%20m%20~%5Ctext%7Band%7D~%5Clog_b%28mn%29%20%3D%20%5Clog_b%20m%20%2B%20%5Clog_b%20n%20%5D%5C%5C%5C%5C%3D%5Cln%204%20%2B%205%20%5Cln%20y%20-2%20%5Cln%20x%5C%5C%5C%5C%3D%5Cln%204%20-2%20%5Cln%20x%20%2B5%20%5Cln%20y)