Answer:
a and c
Step-by-step explanation:
it would be a and c because the first expreesion in the sentace equals 54
<u><em>A and C are the only options that do not equal ( They both equal 24 not 54!) </em></u>
thats entire side is 12
Step-by-step explanation:
you have to multiply i think im not good at it sorry
In order to estimate the mean, you need to choose a value to represent the number in each category of accidents. It is often convenient to use the middle value of the range.
.. (4*6 +10*10 +15*6 +20*9)/(6 +10 +6 +9) = 394/31 ≈ 12.7
Answer:
Step-by-step explanation:
We know that the iceberg is 131 feet above the water and 273 feet bellow the water. We don't need the - on the 272 because we just want to know the length, no the direction it is going. so we add 131 and 272 and get 303.
Answer:
5a. -0.4 m/s²
5b. 290 m
6. 12.9 s
7. 100 s
8. 17.2 km/hr
Step-by-step explanation:
5. "While approaching a police officer parked in the median, you accelerate uniformly from 31 m/s to 27 m/s in a time of 10 s.
a. What is your acceleration?
b. How far do you travel in that time?"
Given:
v₀ = 31 m/s
v = 27 m/s
t = 10 s
Find: a and Δx
v = at + v₀
(27 m/s) = a (10 s) + (31 m/s)
a = -0.4 m/s²
Δx = ½ (v + v₀) t
Δx = ½ (27 m/s + 31 m/s) (10 s)
Δx = 290 m
6. "If a pronghorn antelope accelerates from rest in a straight line with a constant acceleration of 1.7 m/s², how long does it take for the antelope to reach a speed of 22 m/s?"
Given:
v₀ = 0 m/s
v = 22 m/s
a = 1.7 m/s²
Find: t
v = at + v₀
(22 m/s) = (1.7 m/s²) t + (0 m/s)
t = 12.9 s
7. "A 1200 kg airplane starts from rest and moves forward with a constant acceleration of 5 m/s² along a runway that is 250 m long. How long does it take the plane to travel the 250 m?"
Given:
v₀ = 0 m/s
a = 5 m/s²
Δx = 250 m
Find: t
Δx = v₀ t + ½ at²
(250 m) = (0 m/s) t + ½ (5 m/s²) t²
t = 100 s
8. "During a marathon, a runner runs the first 10 km in 0.58 hours, the next 10 km in 0.54 hours and the last 10 km in 0.62 hours. What is the average speed of the runner during that marathon?"
This isn't a constant acceleration problem, so there's no need for a chart.
Average speed = total distance / total time
v = (10 km + 10 km + 10 km) / (0.58 hr + 0.54 hr + 0.62 hr)
v = 30 km / 1.74 hr
v = 17.2 km/hr