1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DanielleElmas [232]
3 years ago
6

A scientist needs 80 liters of a 30% solution of alcohol. She has a 20% solution and a 60% solution available.

Mathematics
1 answer:
True [87]3 years ago
5 0

Answer:

hindi ko po maintin dihan sorryyyyyyyyyy

You might be interested in
Choose another name for plane s look at the picture for the full answer thank you for helping!
IgorC [24]

Answer:

c: plane ptm

Step-by-step explanation:

4 0
3 years ago
Please Hurry! What is the solution to log2_(9x)-log2_3=3?
brilliants [131]

Answer:

log_{2}(9x)  - log_{2}(3) = 3 \\ 3 =  log_{2}(8) or log_{2}( {2}^{3} )  \\  log_{2}( \frac{9x}{3} )  = log_{2}(8) \\  \frac{9x}{3}  = 8 \\ 9x = 8 \times 3 \\ 9x = 24 \\ x =  \frac{24}{9}  \\ x =  \frac{8}{3}  \\ x = 2 \times \frac{2}{3}

6 0
3 years ago
Read 2 more answers
Can an octagon have interior angles that measure 100 degrees, 156 degrees, 125 degrees, 90 degrees, 175 degrees, 160 degrees, an
worty [1.4K]

9514 1404 393

Answer:

  yes

Step-by-step explanation:

The 7 angles listed have a total of 946 degrees. The total interior angle measure in an octagon is 1080 degrees. So, the remaining angle must have a measure of 134°. The figure is entirely feasible.

4 0
2 years ago
PLEASE HELP APAP, WILL MARK BRAINLIEST WHEN POSSIBLE! The length of a rectangle is shown below:
prisoha [69]
Im pretty sure the correct answer is the fourth one
6 0
3 years ago
Read 2 more answers
Directions: Calculate the area of a circle using 3.14x the radius
Leokris [45]

\qquad\qquad\huge\underline{{\sf Answer}}♨

As we know ~

Area of the circle is :

\qquad \sf  \dashrightarrow \:\pi {r}^{2}

And radius (r) = diameter (d) ÷ 2

[ radius of the circle = half the measure of diameter ]

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

<h3>Problem 1</h3>

\qquad \sf  \dashrightarrow \:r = d \div 2

\qquad \sf  \dashrightarrow \:r = 4.4\div 2

\qquad \sf  \dashrightarrow \:r = 2.2 \: mm

Now find the Area ~

\qquad \sf  \dashrightarrow \: \pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times  {(2.2)}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times  {4.84}^{}

\qquad \sf  \dashrightarrow \:area  \approx 15.2 \:  \: mm {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>problem 2</h3>

\qquad \sf  \dashrightarrow \:r = d \div 2

\qquad \sf  \dashrightarrow \:r = 3.7 \div 2

\qquad \sf  \dashrightarrow \:r = 1.85 \:  \: cm

Bow, calculate the Area ~

\qquad \sf  \dashrightarrow \: \pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times (1.85) {}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times 3.4225 {}^{}

\qquad \sf  \dashrightarrow \:area  \approx 10.75 \:  \: cm {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>Problem 3 </h3>

\qquad \sf  \dashrightarrow \:\pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times (8.3) {}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times 68.89

\qquad \sf  \dashrightarrow \:area \approx216.31 \:  \: cm {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>Problem 4</h3>

\qquad \sf  \dashrightarrow \:r = d \div 2

\qquad \sf  \dashrightarrow \:r = 5.8 \div 2

\qquad \sf  \dashrightarrow \:r = 2.9 \:  \: yd

now, let's calculate area ~

\qquad \sf  \dashrightarrow \:3.14 \times  {(2.9)}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times  8.41

\qquad \sf  \dashrightarrow \:area  \approx26.41 \:  \: yd {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>problem 5</h3>

\qquad \sf  \dashrightarrow \:r = d \div 2

\qquad \sf  \dashrightarrow \:r = 1 \div 2

\qquad \sf  \dashrightarrow \:r = 0.5 \:  \: yd

Now, let's calculate area ~

\qquad \sf  \dashrightarrow \:\pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times (0.5) {}^{2}

\qquad \sf  \dashrightarrow \:3.14  \times 0.25

\qquad \sf  \dashrightarrow \:area \approx0.785 \:  \: yd {}^{2}

・ .━━━━━━━†━━━━━━━━━.・

<h3>problem 6</h3>

\qquad \sf  \dashrightarrow \:\pi {r}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times  {(8)}^{2}

\qquad \sf  \dashrightarrow \:3.14 \times 64

\qquad \sf  \dashrightarrow \:area = 200.96 \:  \: yd {}^{2}

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

8 0
2 years ago
Other questions:
  • 2(7g - 4h) - 6(5h - 3g)
    11·2 answers
  • Lines g h and I are parallel and m 1=35
    7·1 answer
  • Use the limit theorem and the properties of limits to find the limit.<br> Picture provided below
    6·1 answer
  • Please help due today!
    6·1 answer
  • Write the quotient as a mixed number. <br><br> 5397 divided by 5
    14·1 answer
  • An alternating current. I Amperes, is given by i = 10sin2nft.where f is the frequenct in Hertz and t the time in seconds.What is
    14·1 answer
  • A marble is randomly selected from a bag containing 3 red marbles, 3 blue marbles and 3 green marbles. What is the probability t
    11·2 answers
  • Natalie practices the piano 588 minutes in 2 weeks. If t represents the total time she
    15·1 answer
  • There are 454 grams in a line. There are 16 ounces in a pound.How many grams are in an ounce?
    12·1 answer
  • The density of liquid a is 8 pounds per gallon and the density of liquid b is 6 pounds per gallon. what quantity of liquid b wei
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!