Answer:
Final temperature = T₂ = 155.43 °C
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Given data:
Mass of coin = 4.50 g
Heat absorbed = 54 cal
Initial temperature = 25 °C
Specific heat of copper = 0.092 cal/g °C
Final temperature = ?
Solution:
Q = m.c. ΔT
ΔT = T₂ -T₁
Q = m.c. T₂ -T₁
54 cal = 4.50 g × 0.092 cal/g °C × T₂ -25 °C
54 cal = 0.414 cal/ °C × T₂ -25 °C
54 cal /0.414 cal/ °C = T₂ -25 °C
130.43 °C = T₂ -25 °C
130.43 °C + 25 °C = T₂
155.43 °C = T₂
The mass change, or the mass defect, can be calculated by the formula that is very known to be associated with Albert Einstein.
E = Δmc²
where
E is the energy gained or released during the reaction
c is the speed of light equal to 3×10⁸ m/s
Δm is the mass change
(1.715×10³ kJ)(1,000 J/1 kJ) = Δm(3×10⁸ m/s)²
Δm = 1.91×10⁻¹¹ kg
<span>A.to calculate the amount of product that would form
</span>
We measure temperature in degrees of Fahrenheit
Answer:also confused ?
Explanation:cant see full answer