The answer is:
:Avoid lying down after eating
That should help
Answer:
1.33 × 10²⁴ molecules CO₂
General Formulas and Concepts:
<u>Chemistry - Stoichiometry</u>
- Reading a Periodic Table
- Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
97.3 g CO₂
<u>Step 2: Define conversions</u>
Avogadro's Number
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CO₂ - 12.01 + 2(16.00) = 44.01 g/mol
<u>Step 3: Convert</u>
= 1.33138 × 10²⁴ molecules CO₂
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules.</em>
1.33138 × 10²⁴ molecules CO₂ ≈ 1.33 × 10²⁴ molecules CO₂
Answer:
Hg2^2+(aq) + 2Cl^-(aq) —> Hg2Cl2(s)
Explanation:
The balanced equation for the reaction is given below:
2NaCl(aq) + Hg2(NO3)2(aq) —> 2NaNO3(aq) + Hg2Cl2(s)
Considering the states of each compound in the reaction, we can see that Hg2Cl2 is in solid form meaning it will precipitate out of the solution
In solution the following occurs:
NaCl —> Na+(aq) + Cl-(aq)
Hg2(NO3)2 —> Hg2^2+(aq) + 2NO3^-(aq)
Combining the two equation together, a balanced double displacement reaction occurs as shown below:
2Na+(aq) + 2Cl-(aq) + Hg2^2+(aq) + 2NO3^-(aq) —> 2Na+2NO3^-(aq) + Hg2^2+2Cl-(s)
From the above we can thus right the insoluble precipitate as
Hg2^2+(aq) + 2Cl^-(aq) —> Hg2Cl2(s)
To know if an equation is balanced you need to check and see how much of each molecule is on either side of the arrow. Right now you have 1-Ca, 2-H, 2-Cl on the left side of the arrow and 1-Ca, 2-Cl, and 2-H on the right side too. Because all the molecules are equal on both sides this means that the equation is balanced. So in front of the CaCl2 there is an assumed coefficient of 1. The answer is 1.