I believe your answer would be Echinoderms and Chordates. I hope this helps!
Answer:
1500
Explanation:
Let's assume that the allele for yellow seed color is "Y" and the allele for green seed color is "y". Genotype of pure breeding yellow seeded plant would be "YY" and that of the green seeded plant would be "yy". A cross between YY and yy gives all heterozygous yellow seeded plants (Yy) in F1 progeny. Self pollination of two F1 plants (Yy x Yy) obtains F2 generation in 3 yellow: 1 green ratio.
The total population size of F2 generation = 2000
The proportion of yellow seeded plants in F2 generation = 3/4 (since the F2 phenotype ratio is given 3 yellow: 1 green)
Therefore, total number of yellow seeded plants in F2 progeny = 3/4 x 2000= 1500
Proteins function optimally at a specific temperature. So if you get too hot or too cold, biochemical reactions in your body start to function less well. If the situation becomes extreme enough, they can cease to function well enough to sustain life.
Warm-blooded animals have an advantage over cold-blooded ones in that their bodies automatically try to maintain the optimal termperature for things in their bodies to function. Cold-blooded animals depend on the environmental temperature to do this for them. That's why reptiles are very sluggish when they're cold, but will "wake up" when they get warm.
The cost to this benefit is that metabolically, warm-blooded animals require a lot more fuel to run their bodies. It's very energy-intensive to maintain a constant body temperature. Cold-blooded animals require far less fuel than warm-blooded ones relative to their size.
The way that proteins operate in a specific temperature is also true of the pH in your body which is also very tightly maintained.
Answer:
To back away
Explanation:
To back away because magnets are different and is they are put the wrong the way it moves back