The Sun is a huge, glowing sphere of hot gas. Most of this gas is hydrogen (about 70%) and helium (about 28%). Carbon, nitrogen and oxygen make up 1.5% and the other 0.5% is made up of small amounts of many other elements such as neon, iron, silicon, magnesium and sulfur.
So typically I would say hydrogen and helium.
Answer:
Direction of the electric force acting on the proton after it enters the electric field is along the positive y-axis.
Explanation:
In an electrical field electrical field lines goes from positive to negative. Therefore, electrical force vector is on exactly the same way with electrical field lines for a proton. Which means if the electrical field directed along the positive y-axis, electrical force for proton will be on the same way.
Larry, a 10-year-old, first sees two identical glasses with water at the same level;then, the water from one of the short, wide glasses is poured into a taller, thinner glass.Larry will likely conclude that <span>a. there is more water in the taller, thinner glass</span>
Yp(t) = A1 t^2 + A0 t + B0 t e(4t)
=> y ' = 2A1t + A0 + B0 [e^(4t) +4 te^(4t) ]
y ' = 2A1t + A0 + B0e^(4t) + 4B0 te^(4t)
=> y '' = 2A1 + 4B0e(4t) + 4B0 [ e^(4t) + 4te^(4t)
y '' = 2A1 + 4B0e^(4t) + 4B0e^(4t) + 16B0te^(4t)
Now substitute the values of y ' and y '' in the differential equation:
<span>y′′+αy′+βy=t+e^(4t)
</span> 2A1 + 4B0e^(4t) + 4B0e^(4t) + 16B0te^(4t) + α{2A1t + A0 + B0e^(4t) + 4B0 te^(4t) } + β{A1 t^2 + A0 t + B0 t e(4t)} = t + e^(4t)
Next, we equate coefficients
1) Constant terms of the left side = constant terms of the right side:
2A1+ 2αA0 = 0 ..... eq (1)
2) Coefficients of e^(4t) on both sides
8B0 + αB0 = 1 => B0 (8 + α) = 1 .... eq (2)
3) Coefficients on t
2αA1 + βA0 = 1 .... eq (3)
4) Coefficients on t^2
βA1 = 0 ....eq (4)
given that A1 ≠ 0 => β =0
5) terms on te^(4t)
16B0 + 4αB0 + βB0 = 0 => B0 (16 + 4α + β) = 0 ... eq (5)
Given that B0 ≠ 0 => 16 + 4α + β = 0
Use the value of β = 0 found previously
16 + 4α = 0 => α = - 16 / 4 = - 4.
Answer: α = - 4 and β = 0
Answer: 438.3 mph
Explanation:
Let z be the distance from the plane to the station. You should draw a right triangle
for the diagram with z on the hypotenuse, 1 on the vertical side, and x on the horizontal
side. The 1 never changes, but x changes with time.
Find the attached file for the solution.