Answer:
7.3cm above the compressed spring.
Explanation:
We can use the conservation energy theorem to solve this problem:

The block was dropped 7.3cm above the compressed spring.
Volume isn't a property of matter at all. You can have a big lump or a tiny lump of the same substance.
Answer:
0.08 N/C
Explanation:
Electric Field: This is defined as the force per unit charge exerted at a point. The expression for electric field is given as,
E = Kq/r².............................. Equation 1
Where E = Electric Field, q = Charge, k = proportionality constant, r = distance.
making q the subject of the equation,
q = Er²/k............................... Equation 2
Given: E = 2 N/C, r = 4 m,
Substitute into equation 2
q = 2(4)²/k
q = 32/k C.
When r is increased to 20 m,
E = k(32/k)/20²
E = 32/400
E = 0.08 N/C.
Hence the electric Field = 0.08 N/C
The acceleration of a 0.90 g drop of blood in the fingertips at the bottom of the swing is the sum of the acceleration of the movement of the finger and the acceleration of gravity. In this case, this is different when the finger goes down, since the acceleration now becomes the difference between the two.
Answer:
C
Explanation:
Energy is neither created or destroyed, but it can change forms...