If all were dimes, the value would be $3.30. Brendan has $2.85 more than that. Each quarter that replaces a dime increases the value by $0.15, so Brendan must have $2.85/$0.15 = 19 quarters.
Brendan has 14 dimes and 19 quarters.
Well you are given the equation so let's plug in for kaylib and see how many miles she can see
distance = sqrt [(3 * height) / 2]
d = sqrt [(3 *48) / 2]
d = sqrt (144 / 2)
d = sqrt (72)
d = sqrt (3 * 3 * 2 * 2 * 2)
d = 6 * sqrt (2)
You you did not list Addisons height but I will say she is at x feet above sea level. we plug in x for height:
d = sqrt [(3x) / 2]
It it says how much farther for Addison which means she can see farther. to find difference we just subtract kaylibs distance from Addison. so:
sqrt [(3x) / 2] - 6 * sqrt (2)
plug in your x and use a calculator to get a decimal approximation
H = 3b+2
A = (h*b)/2 28 = (3b+2)b/2 56 = 3b²+2b 0 = 3b² + 2b - 56
⊕
![\left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \beta \\ \\ \\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} x^{123} \leq \geq \pi \alpha \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] x_{123} \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}}](https://tex.z-dn.net/?f=%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Cbeta%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20x%5E%7B2%7D%20%20%5Csqrt%7Bx%7D%20%20%5Csqrt%5Bn%5D%7Bx%7D%20%20%5Cfrac%7Bx%7D%7By%7D%20%20x_%7B123%7D%20%20x%5E%7B123%7D%20%20%5Cleq%20%20%5Cgeq%20%20%5Cpi%20%20%5Calpha%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20x_%7B123%7D%20%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D)
ω
l
∩
Answer:
They are parallel
Step-by-step explanation:
Same slope but different y-intercept
Yes, solutions, roots, x-intercepts, and zeros are the same thing.
<h3>
What is a quadratic equation?</h3>
The general quadratic equation is given by:
a*x^2 + b*x + c = 0
So the solutions are the values of x such that the above thing is zero.
On another hand, a parabola or a quadratic function is given by:
a*x^2 + b*x + c = y
The roots, zeros, or x-intercepts (these represent the same thing) are given by:
a*x^2 + b*x + c = 0
- Zero or Root means that when you evaluate the function in that value the outcome is zero.
- X-intercept means that for that value of x, the function intercepts the x-axis, so the function is equal to zero.
So these are the values of x such that the function becomes equal to zero, so these are exactly the same thing as the solutions of a quadratic equation.
Concluding, yes, solutions, roots, x-intercepts, and zeros are the same thing.
If you want to learn more about quadratic functions, you can read:
brainly.com/question/1214333