Answer:
The probability is 0.9211
Step-by-step explanation:
Let's call K the event that the student know the answer, G the event that the student guess the answer and C the event that the answer is correct.
So, the probability P(K/C) that a student knows the answer to a question, given that she answered it correctly is:
P(K/C)=P(K∩C)/P(C)
Where P(C) = P(K∩C) + P(G∩C)
Then, the probability P(K∩C) that the student know the answer and it is correct is:
P(K∩C) = 0.7
On the other hand, the probability P(G∩C) that the student guess the answer and it is correct is:
P(G∩C) = 0.3*0.2 = 0.06
Because, 0.3 is the probability that the student guess the answer and 0.2 is the probability that the answer is correct given that the student guess the answer.
Therefore, The probability P(C) that the answer is correct is:
P(C) = 0.7 + 0.06 = 0.76
Finally, P(K/C) is:
P(K/C) = 0.7/0.76 = 0.9211
Answer:
$4956.23 approx
Step-by-step explanation:
Given data
P= $4860
R= 4%
T= 6 months = 0.5 years
Applying the compound interest formula we have
A=P(1+r)^t
Substitute
A=4860(1+0.04)^0.5
A= 4860(1.04)^0.5
A=4860*1.0198
A=4956.228
Hence the balance will be $4956.23 approx
Circle: x^2+y^2=121=11^2 => circle with radius 11 and centred on origin.
g(x)=-2x+12 (from given table, find slope and y-intercept)
We can see from the graphics that g(x) will be almost tangent to the circle at (0,11), and that both intersection points will be at x>=11.
To show that this is the case,
substitute g(x) into the circle
x^2+(-2x+12)^2=121
x^2+4x^2-2*2*12x+144-121=0
5x^2-48x+23=0
Solve using the quadratic formula,
x=(48 ± √ (48^2-4*5*23) )/10
=0.5058 or 9.0942
So both solutions are real and both have positive x-values.
Answer:
0 is an integer of the number