1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stira [4]
3 years ago
10

Can someone help me find the equivalent expressions to the picture below? I’m having trouble

Mathematics
1 answer:
miss Akunina [59]3 years ago
6 0

Answer:

Options (1), (2), (3) and (7)

Step-by-step explanation:

Given expression is \frac{\sqrt[3]{8^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}.

Now we will solve this expression with the help of law of exponents.

\frac{\sqrt[3]{8^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}=\frac{\sqrt[3]{(2^3)^{\frac{1}{3}}\times 3} }{3\times2^{\frac{1}{9}}}

           =\frac{\sqrt[3]{2\times 3} }{3\times2^{\frac{1}{9}}}

           =\frac{2^{\frac{1}{3}}\times 3^{\frac{1}{3}}}{3\times 2^{\frac{1}{9}}}

           =2^{\frac{1}{3}}\times 3^{\frac{1}{3}}\times 2^{-\frac{1}{9}}\times 3^{-1}

           =2^{\frac{1}{3}-\frac{1}{9}}\times 3^{\frac{1}{3}-1}

           =2^{\frac{3-1}{9}}\times 3^{\frac{1-3}{3}}

           =2^{\frac{2}{9}}\times 3^{-\frac{2}{3} } [Option 2]

2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(\sqrt[9]{2})^2\times (\sqrt[3]{\frac{1}{3} } )^2 [Option 1]

2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(\sqrt[9]{2})^2\times (\sqrt[3]{\frac{1}{3} } )^2

                =(2^2)^{\frac{1}{9}}\times (3^2)^{-\frac{1}{3} }

                =\sqrt[9]{4}\times \sqrt[3]{\frac{1}{9} } [Option 3]

2^{\frac{2}{9}}\times 3^{-\frac{2}{3} }=(2^2)^{\frac{1}{9}}\times (3^{-2})^{\frac{1}{3} }

               =\sqrt[9]{2^2}\times \sqrt[3]{3^{-2}} [Option 7]

Therefore, Options (1), (2), (3) and (7) are the correct options.

You might be interested in
Marissa is painting her rectangular patio, with the exception of a bench that does not need to be painted:
mars1129 [50]

Answer:

A = (x + 15)(x + 10) − 5

Step-by-step explanation:

(x+15)(x+10)-5=A would be a solution

To make this easier, let's assign x a value. Let's say 3.

(3+15)(3+10)-5=A

(18)(13)-5=A

234-5=A

A=229

Now with this, we put x in the answer choice and the answer that gives an area of 229 is correct.

A. A=(3+20)(3+10)+12=(23)(13)+12=299+12=311 <u>Answer A is wrong.</u>

B. A=(3+20)(3+10)-12=(23)(13)-12=299-12=287 <u>Answer B is wrong.</u>

C. A=(3+26)(3+15)=(29)(18)=522 <u>Answer C is wrong.</u>

D. A=(3+14)(3+8)=(17)(11)=187 <u>Answer D is wrong.</u>

It's either I'm wrong or the answer choices are wrong.

New answer choices!

A. A=(3+20)(3+11)

=(23)(14)=322 Answer A is wrong.

B. A=(3+15)(3+10)+5

=(18)(13)+5=234+5=239  Answer B is wrong.

C. A=(3+15)(3+10)−5

=(18)(13)-5=234-5=229 Answer C is correct.

D. A=(3+9)(3+10)=(12)(13)=156 <u>Answer D is wrong.</u>

5 0
4 years ago
Match each function with the corresponding function formula when h(x)=5-3x and g(x)=-3+5
Grace [21]

Answer:

k(x) = (3g + 5h)(x) ⇒ (1)

k(x) = (5h - 3g)(x) ⇒ (3)

k(x) = (h - g)(x) ⇒ (2)

k(x) = (g + h)(x) ⇒ (4)

k(x) = (5g + 3h)(x) ⇒ (5)

k(x) = (3h - 5g)(x) ⇒ (6)

Step-by-step explanation:

* To solve this problem we will substitute h(x) and g(x) in k(x) in the

  right column to find the corresponding function formula in the

  left column

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

- Lets start with the right column

# k(x) = (3g + 5h)(x)

∵ g(x) = -3^x + 5

∵ 3g(x) = 3[-3^x + 5] = [3 × -3^x + 3 × 5]

- Lets simplify 3 × -3^x

 take the negative out -(3 × 3^x), and use the rule a^n × a^m = a^(n+m)

∴ -3(3 × 3^x) = -(3^x+1)

∴ 3g(x) = -3^x+1 + 15

∵ h(x) = 5 - 3x

∵ 5h(x) = 5[5 - 3x] = [5 × 5 - 5 × 3x] = 25 - 15x

- Now substitute 3g(x) and 5h(x) in k(x)

∵ k(x) = (3g + 5h)(x)

∴ k(x) = -3^x+1 + 15 + 25 - 15x ⇒ simplify

∴ k(x) = 40 - 3^x+1 - 15x

∴ k(x) = 40 - 3^x+1 - 15x ⇒ k(x) = (3g + 5h)(x)

* k(x) = (3g + 5h)(x) ⇒ (1)

# k(x) = (5h - 3g)(x)

∵ 5h(x) = 25 - 15x

∵ 3g(x) = -3^x+1 + 15

∵ k(x) = (5h - 3g)(x)

∴ k(x) = 25 - 15x - (-3^x+1 + 15) = 25 -15x + 3^x+1 - 15 ⇒ simplify

∴ k(x) = 10 + 3^x+1 - 15x

∴ k(x) = 10 + 3^x+1 - 15x ⇒ k(x) = (5h - 3g)(x)

* k(x) = (5h - 3g)(x) ⇒ (3)

# k(x) = (h - g)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (h - g)(x)

∴ k(x) = 5 - 3x - (-3^x + 5) = 5 - 3x + 3^x - 5 ⇒ simplify

∴ k(x) = 3^x - 3x

∴ k(x)= 3^x - 3x ⇒ k(x) = (h - g)(x)

* k(x) = (h - g)(x) ⇒ (2)

# k(x) = (g + h)(x)

∵ h(x) = 5 - 3x

∵ g(x) = -3^x + 5

∵ k(x) = (g + h)(x)

∴ k(x) = -3^x + 5 + 5 - 3x ⇒ simplify

∴ k(x) = 10 - 3^x - 3x

∴ k(x)= 10 - 3^x - 3x ⇒ k(x) = (g + h)(x)

* k(x) = (g + h)(x) ⇒ (4)

# k(x) = (5g + 3h)(x)

∵ g(x) = -3^x + 5

∵ 5g(x) = 5[-3^x + 5] = [5 × -3^x + 5 × 5] = 5(-3^x) + 25

∴ 5g(x) = -5(3^x) + 25

∵ h(x) = 5 - 3x

∵ 3h(x) = 3[5 - 3x] = [3 × 5 - 3 × 3x] = 15 - 9x

- Now substitute 5g(x) and 3h(x) in k(x)

∵ k(x) = (5g + 3h)(x)

∴ k(x) = -5(3^x) + 25 + 15 - 9x ⇒ simplify

∴ k(x) = 40 - 5(3^x) - 9x

∴ k(x) = 40 - 5(3^x) - 9x ⇒ k(x) = (5g + 3h)(x)

* k(x) = (5g + 3h)(x) ⇒ (5)

# k(x) = (3h - 5g)(x)

∵ 3h(x) = 15 - 9x

∵ 5g(x) = -5(3^x) + 25

∵ k(x) = (3h - 5g)(x)

∴ k(x) = 15 - 9x - [-5(3^x) + 25] = 15 - 9x + 5(3^x) - 25 ⇒ simplify

∴ k(x) = 5(3^x) - 9x - 10

∴ k(x) = 5(3^x) - 9x - 10 ⇒ k(x) = (3h - 5g)(x)

* k(x) = (3h - 5g)(x) ⇒ (6)

4 0
3 years ago
ILL MARK BRAINLIEST AND RATE
motikmotik

Answer:

i think this might be right?

75p - ( p times -10) + 35 = w

Step-by-step explanation:

7 0
3 years ago
Roy and Sam start solving the equation as follows.
denpristay [2]

Answer:

The correct option is D.

Step-by-step explanation:

The given equation is

-3x+4=5x-6

According to the addition property of equality a=b and a+c=b+c are equivalent equations.

Use addition property of equality, add 3x on both the sides.

-3x+4+3x=5x-6+3x

4=8x-6

Therefore Sam's work is incorrect because he make calculation mistake.

According to the subtraction property of equality a=b and a-c=b-c are equivalent equations.

Use subtraction property of equality, subtract 5x from both the sides.

-3x+4-5x=5x-6-5x

-8x+4=-6

Therefore Roy's work is correct because he used subtraction property.

Option D is correct.

7 0
3 years ago
A number is 9 more than another number. Twice the sum of the two numbers is 10. Find the two numbers.
Brrunno [24]

Step-by-step explanation:

the formula can be;

X+9x=10

10x=10X=10/10=1

X=1+9(1)=1+9=10 Answer

4 0
3 years ago
Other questions:
  • What are the odds in favor of randomly drawing the letter A from the letters in the word ALABAMA?
    8·2 answers
  • Rename the mixed fration 17/10
    11·2 answers
  • ***PLEASE HELP WILL GIVE BRAINLIEST!!!***
    15·1 answer
  • Cana buys candy for her birthday party at a supermarket where there is no sales tax. She buys lollipops that cost $0.49 each and
    15·1 answer
  • Determine the gcf. 2y^10, 5y^4, 6y^5
    13·1 answer
  • What is the Absolute value of -6
    15·1 answer
  • What angle is 134?<br> Right<br> Obtuse straight<br> Actute
    12·2 answers
  • I need to find out what the answer to this math problem is. 7/8 divided by 1/6
    6·1 answer
  • Simplify.
    6·1 answer
  • The formula for converting C to F is C =
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!