26.8% of examinees will score between 600 and 700.
This question is based on z score concept.
A Z-score is a numerical measurement that describes a value's relationship to the mean of a group of values. Z-score is measured in terms of standard deviations from the mean. If a Z-score is 0, it indicates that the data point's score is identical to the mean score.

where:
μ is the mean
σ is the standard deviation of the population
Given:
μ = 560
σ = 90
For
600≤ X≤700
for x = 700
Z score =x - μ/σ
=(700 - 560)/90
= 1.55556
P-value from Z-Table:
P(560<x<700) = P(x<700) - 0.5 = 0.44009
for x = 600
Z score =x - μ/σ
=(600 - 560)/90
= 0.44444
P-value from Z-Table:
P(560<x<600) = P(x<600) - 0.5 = 0.17164
∴ P(600<x<700) = P(560<x<700) - P(560<x<600)
= 0.44009 - 0.17164
=0.26845
∴26.8% percentage of examinees will score between 600 and 700.
Learn more about Z score here :
brainly.com/question/15016913
#SPJ4
Which data set has an outlier? 25, 36, 44, 51, 62, 77 3, 3, 3, 7, 9, 9, 10, 14 8, 17, 18, 20, 20, 21, 23, 26, 31, 39 63, 65, 66,
umka21 [38]
It's hard to tell where one set ends and the next starts. I think it's
A. 25, 36, 44, 51, 62, 77
B. 3, 3, 3, 7, 9, 9, 10, 14
C. 8, 17, 18, 20, 20, 21, 23, 26, 31, 39
D. 63, 65, 66, 69, 71, 78, 80, 81, 82, 82
Let's go through them.
A. 25, 36, 44, 51, 62, 77
That looks OK, standard deviation around 20, mean around 50, points with 2 standard deviations of the mean.
B. 3, 3, 3, 7, 9, 9, 10, 14
Average around 7, sigma around 4, within 2 sigma, seems ok.
C. 8, 17, 18, 20, 20, 21, 23, 26, 31, 39
Average around 20, sigma around 8, that 39 is hanging out there past two sigma. Let's reserve judgement and compare to the next one.
D. 63, 65, 66, 69, 71, 78, 80, 81, 82, 82
Average around 74, sigma 8, seems very tight.
I guess we conclude C has the outlier 39. That one doesn't seem like much of an outlier to me; I was looking for a lone point hanging out at five or six sigma.