The height at t seconds after launch is
s(t) = - 16t² + V₀t
where V₀ = initial launch velocity.
Part a:
When s = 192 ft, and V₀ = 112 ft/s, then
-16t² + 112t = 192
16t² - 112t + 192 = 0
t² - 7t + 12 = 0
(t - 3)(t - 4) = 0
t = 3 s, or t = 4 s
The projectile reaches a height of 192 ft at 3 s on the way up, and at 4 s on the way down.
Part b:
When the projectile reaches the ground, s = 0.
Therefore
-16t² + 112t = 0
-16t(t - 7) = 0
t = 0 or t = 7 s
When t=0, the projectile is launched.
When t = 7 s, the projectile returns to the ground.
Answer: 7 s
Answer:
Step-by-step explanation:
to calculate mean add all the entries in a week ,then divide by 7(the number of days)
i give you hint
mean for week 1=(52+65+... +60)/7
Answer: Approximately 25187 animals of this species will be left in 2025
Step-by-step explanation:
We would apply the formula for exponential decay which is expressed as
y = b(1 - r)^x
Where
y represents the population of animals after x years.
x represents the number of years.
b represents the initial population of animals.
r represents rate of decay.
From the information given,
b = 200000
r = 4.5% = 4.5/100 = 0.045
x = 2025 - 1980 = 45 years
Therefore,
y = 200000(1 - 0.045)^45
y = 200000(0.955)^45
y = 25187
Answer:
r = 5 cm
Step-by-step explanation:
A = πr²
78.53 = (3.14)r²
divide by 3.14
25 = r²
r = ±5
r = 5
I don't understand what you're asking, is there supposed to be a picture with the question?